并查集(UnionSet)

并查集是一种用于处理集合合并与查找的问题的数据结构,常用于解决元素分组问题。初始化时,每个元素形成独立的集合。通过FindSet查找元素所在的集合,采用路径压缩优化降低查找时间复杂度至O(1)。在合并集合时,通过启发式合并策略(如秩优化)确保树的高度最小,进一步提升效率。并查集的空间复杂度为O(n),时间复杂度经过优化后接近O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 前述:
在一些有N个元素的集合应用问题中,通常是在开始时让每个元素构成一个单元素的集合,然后按照一定顺序将属于同一组的元素所在的集合合并,期间要反复查找一个元素在哪个集合中,这类题目看似并不复杂,但是数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受,即使空间勉强通过,时间复杂度也极高,只能采取一种特殊的数据结构——->并查集

2. 并查集初始化:
一般用树形结构来组织并查集,类似一颗森林
每一个节点均有一个father[i]来表示它的父亲节点
这里是初始化每个元素,可以使用for循环调用InitSet
初始化集合,目前只有一个元素,根节点为自身,即x就是根

//并查集(用数组来实现)
int father[N];
void InitSet(int x)
{
    //根据实际情况指定的父节点可以变化,这里使用本身作为根 
    father[x] = x; 
}

3. 并查集查找
FindSet(x)—–>,查找x所在的集合
若想知道元素3所在的集合,可以通过father[3]=2,father[2]=1,father[1]=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值