题目:
样例1:
样例2:
思路:
对于迷宫问题找出最小步数,就是最短路,一般迷宫问题中,权值都相等,找出最短路,那么 BFS 就可以做到,这是 BFS 的一个特性。
代码详解如下:
#include <iostream>
#include <queue>
#define endl '\n'
#define x first
#define y second
#define mk make_pair
using namespace std;
using PII = pair<int, int>;
const int N = 500;
int n, m;
int g[N][N];
bool vis[N][N]; // 标记是否已走过该点
// 坐标走动方向数组
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
// 坐标往前走动的条件
bool isRun(int bx, int by)
{
return (bx >= 0 && bx < n && by >= 0 && by < m && !g[bx][by] && !vis[bx][by]);
}
int BFS(int x, int y)
{
int step = 0; // 走动步数
queue<PII>q; // 存储走动坐标
q.push(mk(x, y));
while (q.size())
{
// 这一层表示 走动的一步
int sz = q.size();
while (sz--)
{
// 这一层表示四个方向中我们可以走动哪一个防线
PII t = q.front();
q.pop();
vis[t.x][t.y] = true; // 标记当前走动的坐标
if (t.x == n - 1 && t.y == m - 1)
{
// 如果走动到了我们目标方向
// 返回我们走动了多少步
return step;
}
// 尝试往四个方向走动
for (int i = 0; i < 4; ++i)
{
int bx = t.x + dx[i];
int by = t.y + dy[i];
if (isRun(bx, by))
{
// 如果可以走动
// 这里我们也应该注意标记好
// 我们下一步要走动的方向
// 避免我们某一个点与这个点又重复走动
// 陷入死循环
vis[bx][by] = true;
q.push(mk(bx, by));
}
}
}
step++; // 所有可能的走动方向确定好以后,步数累加
}
return -1; // 如果尝试过所有的方向都没有走到目标坐标,那么返回 -1 表示走不到
}
int main()
{
cin >> n >> m;
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
cin >> g[i][j];
}
}
cout << BFS(0, 0) << endl;
return 0;
}
最后提交: