一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。
这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i
代传人只能在第i-1
代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z
,每向下传承一代,就会减弱r%
,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。
输入格式:
输入在第一行给出3个正整数,分别是:N(≤105)——整个师门的总人数(于是每个人从0到N−1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0,⋯,N−1)描述编号为i的人所传的徒弟,格式为:
K i , I D [ 1 ] , I D [ 2 ] ⋯ I D [ K i ] K_i,ID[1] ,ID[2] ⋯ ID[K_i] Ki,ID[1],ID[2]⋯ID[Ki]
其中K**i是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。K**i为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。
输出格式:
在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过1010。
输入样例:
10 18.0 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3
输出样例:
404
就是树的深搜+一个预处理,题目没说有多少个儿子,也就确定不了有多少边,第一次我是18分,报TLE,我就应该想到是M开小了,然后变成了24分,我以为是最后输出有问题(其实不是),看了题解发现是有可能祖师爷得道,特判就A了。
/*
A: 10min
B: 20min
C: 30min
D: 40min
*/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <set>
#include <map>
#include <vector>
#include <sstream>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mem(f, x) memset(f,x,sizeof(f))
#define fo(i,a,n) for(int i=(a);i<=(n);++i)
#define fo_(i,a,n) for(int i=(a);i<(n);++i)
#define debug(x) cout<<#x<<":"<<x<<endl;
#define endl '\n'
using namespace std;
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
template<typename T>
ostream& operator<<(ostream& os,const vector<T>&v){for(int i=0,j=0;i<v.size();i++,j++)if(j>=5){j=0;puts("");}else os<<v[i]<<" ";return os;}
template<typename T>
ostream& operator<<(ostream& os,const set<T>&v){for(auto c:v)os<<c<<" ";return os;}
template<typename T1,typename T2>
ostream& operator<<(ostream& os,const map<T1,T2>&v){for(auto c:v)os<<c.first<<" "<<c.second<<endl;return os;}
template<typename T>inline void rd(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
typedef pair<int,int>PII;
typedef pair<long,long>PLL;
typedef long long ll;
typedef unsigned long long ull;
const int N=2e5+10,M=1e6+10;
ll n,m,_;
int h[N], e[M], ne[M], idx,w[N];
void add(int a, int b) // 添加一条边a->b
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
double ans,sub,init;
ll d[N];
map<ll,double>mp;//层数对应的乘积
void Init(){
double mul=1;
for(int i=0;i<=n;i++){
mul *=(100-sub)*0.01;
mp[i] = mul;
}
}
void dfs(int u,int fa){
int son=0;
for(int i=h[u];~i;i=ne[i]){
int j=e[i];
if(j==fa)continue;
if(!d[j]){
d[j]=d[u]+1;
son++;
dfs(j,u);
}
else continue;
}
if(!son){
if(u==0){//祖师爷得道,想不到
ans = init*w[u];
}
else
ans += init*mp[d[u]-1]*w[u];
}
}
void solve(){
memset(h, -1, sizeof h);
scanf("%lld%lf%lf",&n,&init,&sub);
Init();
for(int i=0;i<n;i++){
int son;cin>>son;
if(!son){
int x;cin>>x;
w[i]=x;
}
while(son--){
int x;cin>>x;
add(i,x);
add(x,i);
}
}
dfs(0,-1);
// printf("%.0lf",floor(ans));
printf("%lld",(ll)ans);
}
int main(){
solve();
return 0;
}