欢迎大家来到我们的项目实战课,本期内容是《基于Pytorch的EfficientNet血红细胞分类竞赛实战》。所谓项目课,就是以简单的原理回顾+详细的项目实战的模式,针对具体的某一个主题,进行代码级的实战讲解。
本次主题
在深度学习图像分类模型的训练过程中,有非常多的工程技巧,包括数据的使用,模型训练超参数的调整,模型预测超参数的调整,要想在比赛中获得好的成绩,必须学会综合使用相关技能。
本次我们给大家详细讲解图像分类竞赛中常用的技巧,它们也可以被拓展到其他任务,如目标检测与图像分割,内容非常丰富,本次课程定价为49元,经过剪辑后的总时长约为120分钟,各部分课程内容与时长如下:
部分 | 内容 | 时长(分钟) |
No.1 | 内容简介 | 5 |
No.2 | 竞赛思路分析 | 6 |
No.3 | 数据集统计分析,模型搭建和训练 | 60 |
No.4 | 学习率调整 | 9 |
No.5 | 标签平滑 | 7 |
No.6 | 知识蒸馏 | 10 |
No.7 | 投票策略 | 12 |
No.8 | TTA策略 | 8 |
下面我们来简单看一下各部分的内容:
第1部分:介绍本次项目的内容,本部分内容可以免费收听。
第2部分:竞赛思路分析,简单介绍竞赛涉及的技术路线,本部分内容可以免费收听。
第3部分:基础功能实现,包括数据集分析,模型的搭建与训练,本部分内容可以免费收听。
第4部分:提升分类竞赛模型的各种技巧,包括学习率调整,标签平滑,知识蒸馏,投票策略,TTA策略。
本次课程讲师为郭冰洋,技术社区《有三AI》专栏作者,课程讲师,目前于东北大学软件学院攻读博士学位。主要研究领域为图像分割、缺陷检测、弱监督学习、小样本学习等。
如何订阅
我们的视频课全部在小鹅通平台,可以使用手机APP鹅学习或者直接在网页进行登录,内容试听以及订阅请直接扫如下二维码:
课程详情如下:
如果想一次性学习图像分类方向的内容,大家也可以订阅《深度学习之图像分类》专栏,介绍如下:
【视频课】CV必学,超10小时,3大模块,5大案例,循序渐进地搞懂图像分类理论与实践!
更多实战课内容
更多的项目实战课内容,请大家参考我们的项目实战课程合集,如下:
【CV冬季划】终极进阶,超30个项目实战+3本书+3年知识星球
课程相关问题答疑,请联系微信-坨坨瑜进项目实战群:
实战课讲师招募
为了进一步丰富有三AI生态的实战内容,欢迎有经验,有能力的讲师报名成为平台讲师:
讲师要求如下:
(1) 有多次人工智能领域教学经验,擅长演讲与教学。
(2) 有3年以上人工智能领域项目实战经验。
(3) 有三AI已有生态成员优先。
实战课的收入与平台采取固定分成的方式,具体细节可在内容组了解详情,报名请联系微信-坨坨瑜提交简历,或直接联系有三本人。
往期相关