Pytorch 之torch.nn初探第3关:非线性--Nonlinearities

本文介绍了PyTorch中的几个关键非线性函数,包括ReLU、Threshold、Sigmoid和Tanh,详细阐述了它们的用途、公式、参数及应用示例,强调了非线性模型在实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实际应用中,非线性模型往往比线性模型更加适用,而 torch.nn 中也提供了许多非线性模型供大家使用。让我们一起来看一看吧!

任务描述

请同学们掌握 torch.nn 提供的几个重要的非线性模型,如下所示。由此对数据进行相应的非线性映射,便于之后的处理和应用。

  • ReLU
  • Threshold
  • Sigmoid
  • Tanh

本关任务:

本关提供了一个 Variable 类型的变量input,利用tanh模型对数据进行非线性映射。

相关知识

在编程中,我们常常需要对满足不同条件的数据进行不同的处理,这里我们可以利用非线性模型对数据进行映射以满足要求。

ReLU()

基本形式:

torch.nn.ReLU (inplace=False)

用途:应用 ReLU公式对输入数据进行转换: ReLU (x)=max(0,x)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ad_m1n

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值