ad_m1n
承接大学生各类计算机课程设计、项目、竞赛指导,项目申报书、ppt,开题中期结题报告;竞赛项目代码等
cs专业保研定位、简历指导、联系导师、邮件文书等
展开
-
DAPP—基于智能合约的网络投票系统设计与实现
1.进行网络投票系统的需求分析和功能设计;2.在数据库中构建数据库、表或视图,熟悉数据库开发流程;3.根据网络投票系统的功能,设计各页面和脚本,掌握动态网页的制作技术;4.后台:能编辑候选人名单、能发布投票的结果、能接收投票、能设置投票的起止时间、能记录每个投票者得名字、主机的ip、主机的cpu id、投票的时间、能制定和实施合理的投票规则。5.前台: 能查看候选人名单、投票的结果、能投票。开发工具:Visual Studio Code。原创 2024-02-26 15:43:02 · 391 阅读 · 1 评论 -
课程设计-源代码漏洞监测【软件代码缺陷性检测】
是源代码的抽象语法结构的树状表示,树上的每个节点都表示源代码中的一种结构。示例code:int a=42;int b=5;int c=a+b;原创 2023-10-15 12:23:25 · 566 阅读 · 3 评论 -
适合入门的一些现成的人工智能项目
原创 2022-02-28 22:33:59 · 822 阅读 · 0 评论 -
数据库课程设计—人事管理系统
在现代企业中,人力资源管理是一个至关重要的领域,涉及招聘、员工档案管理、薪资福利、考勤管理、绩效评估等多个方面。一个高效的人事管理系统可以帮助企业管理者更好地处理与员工相关的信息和流程,提供决策支持,并优化企业的人力资源配置。原创 2024-02-26 15:27:23 · 450 阅读 · 0 评论 -
Pytorch 之torch.nn进阶第3关:距离函数
在做分类时常常需要估算不同样本之间的相似性度量(),这时通常采用的方法就是计算样本间的“距离”(Distance)。本关将详细介绍不同计算方式的距离函数及具体应用。原创 2022-10-05 09:46:02 · 897 阅读 · 0 评论 -
Pytorch 之torch.nn进阶第2关:损失函数
衡量输入 x和目标 y之间样本方差的平均绝对值:原创 2022-10-05 09:46:07 · 959 阅读 · 0 评论 -
Pytorch 之torch.nn初探第3关:非线性--Nonlinearities
在实际应用中,非线性模型往往比线性模型更加适用,而torch.nn中也提供了许多非线性模型供大家使用。让我们一起来看一看吧!原创 2022-10-05 09:45:57 · 1134 阅读 · 0 评论 -
Pytorch 之torch.nn初探第4关:卷积--Convolution Layers
经过前几节的的学习,想必大家对torch.nn有了初步的了解。接下来,向大家介绍神经网络中的一种特殊的定义——卷积层!原创 2022-10-05 09:45:51 · 804 阅读 · 0 评论 -
Pytorch 之torch.nn进阶第1关:正则化
经过“ Pytorch 之 torch.nn初探“ 实训的学习,想必同学们对torch.nn有了一个初步的认识。接下来,本实训将介绍更多内容帮助同学们运用神经网络的特性。任务描述本关任务:本关提供了一个Variable类型的变量input,要求利用创建一个4维的 带有学习参数的正则化量m,并输出其weight和bias。相关知识正则化项即罚函数,该项对模型向量进行“惩罚”,从而避免单纯最小二乘问题的过拟合问题。在本节中,我们将介绍正则化方面的知识,这有助于预防过拟合的问题的产生。原创 2022-10-05 09:46:12 · 1271 阅读 · 0 评论 -
Pytorch 之torch.nn初探第5关:池化--Pooling Layers
若输入大小: (N,C,L),输出大小(N,C,Lout)和池化窗口大小k的关系是如果填充不为零,则输入在两侧都会隐式填充零。参数,stride,padding可以是一个int或一个元素的元组。原创 2022-10-05 09:46:20 · 1331 阅读 · 0 评论 -
Pytorch 之torch.nn初探第2关:线性--Linear layers
说完了NN的构成元素Module,下面可以介绍如何使用PyTorch构建网络了,这部分主要使用了torch.nn包。让我们来看一下它到底是一个多么神奇的工具吧!原创 2022-10-04 21:38:32 · 1351 阅读 · 2 评论 -
Pytorch 之torch.nn初探 第1关:torch.nn.Module
神经网络可以使用torch.nn包构建。nn.Linearnn.Conv1dnn.Conv2dnn.Conv3dnn.Sigmoidnn.Tanhnn.ReLUnn.LSTMnn.GRUnn.Dropoutnn.MSELossnn.NLLLoss这些类的实例将具有一个内置的__call__函数,可通过图层运行输入。原创 2022-10-04 21:37:25 · 2361 阅读 · 0 评论 -
第1关:AlphaBeta剪枝算法求解博弈树最优选择
本关任务:学习人工智能博弈算法中的 AlphaBeta 剪枝技巧,并基于 MinMax 算法编程实现如下图博弈树最优值问题的求解。博弈树的输入形式为字符串:[A, [B, (E, 3), (F, 12), (G, 8)], [C, (H, 2), (I, 4), (J, 6)], [D, (K, 14), (L, 5), (M, 2)]],其中 [] 里的第一项为结点名称,后面的 [] 或 () 为子结点,而 () 里边则为叶子结点名称及其值。原创 2022-10-04 21:35:53 · 692 阅读 · 0 评论 -
神经网络之网络基础第4关:优化方法:梯度下降
优化算法的作用是通过不断改进模型中的参数使得模型的损失最小或准确度更高。在神经网络中,训练的模型参数主要是内部参数,包括权值(W)和偏置(B)。模型的内部参数在有效训练模型和产生准确结果方面起着非常重要的作用。常见的优化算法分为两类。1.一阶优化算法。该算法使用参数的梯度值来最小化损失值。最常用的一阶优化算法是梯度下降。函数梯度可以采用导数dxdy的多变量表达式进行表达,用于表示 y 相对于 x 的瞬时变化率。通常为了计算多变量函数的导数,用梯度代替导数,并使用导数来计算梯度。2.二阶优化算法。原创 2022-10-04 21:33:01 · 1176 阅读 · 0 评论 -
神经网络之网络基础第3关:常见学习方法
本关任务:通过学习神经网络常见的学习方法,完成相应选择题。原创 2022-10-04 21:32:04 · 501 阅读 · 0 评论 -
神经网络之网络基础第1关:神经网络概述
本关任务:通过学习神经网络模型的基础概念知识,完成相应的选择题。相关知识。原创 2022-10-04 21:29:10 · 2103 阅读 · 0 评论 -
群智能算法 第5关:动手实现旅行商问题
本关任务:使用 python 实现遗传算法解决 TSP 问题。原创 2022-10-04 21:21:36 · 966 阅读 · 0 评论 -
群智能算法 第4关:蚁群算法 - 商队旅行最短路径计算
本关任务:使用 python 实现蚁群算法,并寻找商队旅行最短路径。原创 2022-10-04 21:20:05 · 1952 阅读 · 0 评论 -
群智能算法第3关:粒子群算法 - 目标函数最优解计算
本关任务:使用 python 实现粒子群算法,并求解目标函数最优解。原创 2022-10-04 21:17:06 · 2757 阅读 · 0 评论 -
神经网络之网络基础第2关:神经元
本关任务:使用 python 实现遗传算法,并求目标函数最优解。原创 2022-10-04 21:13:00 · 961 阅读 · 0 评论 -
群智能算法第2关:遗传算法 - 函数最优解计算
本关任务:使用 python 实现遗传算法,并求目标函数最优解。原创 2022-09-18 13:05:18 · 2170 阅读 · 0 评论 -
群智能算法 第一关:初始群智能算法
【代码】群智能算法。原创 2022-09-18 12:58:01 · 1526 阅读 · 0 评论 -
人工智能之启发式搜索算法
人工智能之启发式搜索算法,头歌educator,AI原理。原创 2022-09-18 12:37:05 · 3877 阅读 · 0 评论