质数、回文、回文质数等问题。
重读基础概念
素数
自然数(natural number):用以计量事物件数和或表示事物次序的数。从 0 开始,由全体非负整数组成的集合。
素数(prime number),又称质数,满足条件:仅有 1 和自身两个正因数的自然数(N≥2)称之为素数。0、1 既不是合数,也不是质数。数论的重要概念。
// 判断质数
int isPrime(int x) {
if (x<2) return 0;
for (int i=2; i*i<=x; i++) {
if (x%i==0) return 0;
}
return 1;
}
回文数
回文数(palindrome number),N 是一任意自然数,将 N 的各位数字反向排列所得自然数与 N 相等,正读和倒读都一样的自然数。按数位分析如下:
- 0~9,个位数全是回文数;
- 10~99,两位数中,个位数和十位数相同的自然数,也就是 11 的倍数全是回文数;
- 100~999,三位数中,个位数和百位数相同的自然数全是回文数,
d1*100 + d2*10 + d1(1<=d1<=9,0<=d2<=9)
; - 10000~9999,四位数中,个位数和千位数相同,十位数和百位数相同的自然数全是回文数,
d1*1000 + d2*100 + d2*10 + d1(1<=d1<=9,0<=d2<=9)
; - etc.
// 数组方法:LeetCode 运行时间,0ms,超过100%的其它方案
int isPalindrome(int x) {
if (x<0) return 0;
if (0<=x&&x<=9) return 1;
if (x%10==0) return 0;
int num[10]; // INT_MAX 是 9 位数
int i = 0;
while (x) {
num[i++] = x%10;
x /= 10;
}
/** 个人更加习惯的写法是:for,遇到不等就结束 */
for(int lo=0, hi=i-1; lo<hi; lo++, hi--) {
if(num[lo]!=num[hi]) return 0;
}
return 1;
/** while 实现方式
int lo=0, hi=i-1; // 双指针解法
while (num[lo] == num[hi]) {
if (lo==hi || lo==hi-1) return 1; // 奇数数位 || 偶数数位,到中间结束
lo++; hi--;
}
return 0;
*/
}
int reverse(int x) {
int ans = 0;
while (x) {
ans = 10*ans + x%10; x /= 10;
}
return ans;
}
// 数学方法
int isPalindrome(int x) {
if (x==reverse(x)} return 1; else return 0;
}
经典案例重现
P1217 [USACO1.5]回文质数
1- 读题
回文质数,既回文数,又质数,找出 [a, b] 范围内的所有质数,使用换行符分隔(5≤a<b≤100000000)。
- 输入,一行两个数字 a,b
- 输出,一个回文质数的列表,一行一个
2- 列举
- 一位数,0~9 全是回文数,其中,5、7 同时是素数
- 两位数,回文数全是 11 的倍数,除 11 之外,必然都不是素数
- 三位数,若个位数和百位数相等,全是回文数,当个位数是偶数,一定能被 2 整除,非素数。个位数和百位数相等,且是奇数时,才有可能是回文质数
- 四位数,若个位数和千位数相等、十位数和百位数相等,则是回文数,
1000*d1 + 100*d2 + 10*d2 + d1 = 1001*d1 + 110*d2 = 11 * ( 91*d1 + 10*d2)
,四位数的回文数一定能被 11 整除,肯定不是素数。其它,偶数位数的回文数,也一定能被 11 整除,同样不是素数 - 五位数、七位数等位数为奇数的数字,有可能是回文质数
3- 编程实现
(1)暴力破解:回文和素数分开单独做判断。最后一个测试点,出现 TLE:Time Limit Exceeded.
超时。
#include <iostream>
using namespace std;
int isPrime(int x) {
if (x < 2) return 0;
for(int i = 2; i * i <= x; i++) {
if (x % i == 0) return 0;
}
return 1;
}
int isPalindrome(int x) {
if (x < 0) return 0;
if (1 <= x && x <= 9) return 1;
if (x % 10 == 0) return 0;
int num[10]; // INT_MAX 是 9 位数
int i = 0;
while (x) {
num[i++] = x % 10;
x /= 10;
}
for(int lo = 0, hi = i - 1; lo < hi; lo++, hi--) {
if (num[lo] != num[hi]) {
return 0;
}
}
return 1;
}
int main() {
int a, b;
cin >> a >> b;
// 小优化:素数一定是奇数
a = a % 2 ? a : a + 1;
while (a <= b) {
// 小优化:回文数的判断更省时, && 短路效果
if(isPalindrome(a) && isPrime(a)) {
cout << a << '\n';
}
a += 2;
}
return 0;
}
(2)优化算法:统一回文素数特点,构造回文,且极可能是素数的数字降低循环次数。
#include <cstdio>
using namespace std;
// 根据题况,调整 isPrime
int isPrime(int x) {
for(int i=3; i*i<=x; i++) if(x%i==0) return 0;
return 1;
}
int main() {
int a, b;
scanf("%d%d", &a, &b);
// 1- <100 5、7、11
if (a<=5 && b>=5) printf("%d\n", 5);
if (a<=7 && b>=7) printf("%d\n", 7);
if (a<=11 && b>=11) printf("%d\n", 11);
int num = 0;
// 2- 100~999
for(int d1=1; d1<=9; d1+=2) {
for(int d2=0; d2<=9; d2++) {
num = 101*d1 + 10*d2;
if(num < a) continue; // 从 a 开始
if(num > b) return 0; // 到 b 结束
if(isPrime(num)) printf("%d\n", num);
}
}
// 3- 10000~99999
for(int d1=1; d1<=9; d1+=2) {
for(int d2=0; d2<=9; d2++) {
for(int d3=0; d3<=9; d3++) {
num = 10001*d1 + 1010*d2 + 100*d3;
if(num < a) continue; // 从 a 开始
if(num > b) return 0; // 到 b 结束
if(isPrime(num)) printf("%d\n", num);
}
}
}
// 4- 1000000~9999999
for(int d1=1; d1<=9; d1+=2) {
for(int d2=0; d2<=9; d2++) {
for(int d3=0; d3<=9; d3++) {
for(int d4=0; d4<=9; d4++) {
num = 1000001*d1 + 100010*d2 + 10100*d3 + 1000*d4;
if(num < a) continue; // 从 a 开始
if(num > b) return 0; // 到 b 结束
if(isPrime(num)) printf("%d\n", num);
}
}
}
}
return 0;
}
866. 回文素数
1- 读题
求出大于或等于 N 的最小回文素数(1 <= N <= 10^8^
)。答案肯定存在,且小于 2 * 108。
2- 列举
3- 编程实现
暴力破解超时,统一考虑回文素数特点,避免数字为偶数数位时的循环。
class Solution {
public:
int isPrime(int x) {
for(int i=2; i*i <= x; i++) if(x%i==0) return 0;
return 1;
}
int reverse(int x) {
int ans = 0;
while (x) {
ans = ans*10 + x%10;
x /= 10;
}
return ans;
}
int isPalindrome(int x) {
if(x%10==0) return 0;
int num[10]; // INT_MAX 最大是 9 位数
int i=0;
while(x) {
num[i++] = x%10;
x /= 10;
}
for(int lo=0, hi=i-1; lo<hi; lo++, hi--) {
if(num[lo] != num[hi]) return 0;
}
return 1;
}
int primePalindrome(int x) {
if(x<=2) return 2;
if(x<=3) return 3;
if(x<=5) return 5;
if(x<=7) return 7;
if(x<=11) return 11;
if(x<=101) return 101;
while(true) {
// if(x == reverse(x) && isPrime(x)) {
if(isPalindrome(x) && isPrime(x)) {
return x;
}
x ++;
if (1000 < x && x < 10000) x = 10001;
else if (100000 < x && x < 1000000 ) x = 1000001;
else if (10000000 < x && x < 100000000) x = 100000001;
}
}
};