为什么 Pr 中添加的文字很模糊?

在Pr中进行视频剪辑时,如果出现了文字在播放时模糊,静止时清晰的情况,一般可以通过调整回放分辨率解决。

回放分辨率默认为1/2。修改为“完整”即可。

在这里插入图片描述

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
### 如何在同一张图表中绘制多个 Precision-Recall (PR) 曲线 为了在同一张图表中绘制多个 PR 曲线,可以利用 `matplotlib` 和 `sklearn.metrics.precision_recall_curve` 来计算并绘图。下面展示了具体的实现方法。 #### 数据准备 假设已经获得了不同模型对于同一测试集的预测概率以及真实标签列表。这些数据用于后续调用 `precision_recall_curve` 方法来获取各个模型对应的精度(Precision)和召回率(Recall)[^2]。 ```python from sklearn.metrics import precision_recall_curve import matplotlib.pyplot as plt # 假设这是来自六个不同模型的数据 models_predictions = { 'Model_1': ([...], [...]), # 真实标签, 预测分数 'Model_2': ([...], [...]), 'Model_3': ([...], [...]), 'Model_4': ([...], [...]), 'Model_5': ([...], [...]), 'Model_6': ([...], [...]) } ``` #### 绘制多条 PR 曲线 通过遍历上述字典中的每一对键值对,分别计算各自的 Precision 和 Recall 数组,并将其添加到同一个图形对象上去。最后设置坐标轴名称、标题及显示图例完成整个图像展示过程。 ```python fig, ax = plt.subplots(figsize=(8, 6)) for name, (true_labels, pred_scores) in models_predictions.items(): precisions, recalls, _ = precision_recall_curve(true_labels, pred_scores) ax.plot(recalls, precisions, label=name) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_title('Multiple Models\' Precision-Recall Curves') ax.legend() plt.show() ``` 此段代码会创建一个新的子图实例(`fig`, `ax`),并通过循环迭代每一个模型的结果集合,依次调用 `plot()` 函数将各条曲线加入到当前活动的 Axes 对象 (`ax`) 中去;同设置了 X 轴表示 "Recall", Y 轴代表 "Precision"。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值