【神经网络】3. 编写一个简单的神经网络

本文的目的:是从编程上去理解一个神经网络的组成框架,并且以鸢尾花分类项目为例,用python在tensorflow 2下进行神经网络搭建并测试

一个基本的神经网络项目可以从以下几个方面进行编写:

首先导入所需的模块

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

1. 准备数据

1.1 数据集读入

导入数据,分别为输入特征和标签

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

打印x_data,可以看到特征是一个150x4的矩阵数据,特征有4种,一共有150条数据。

打印y_data,可以看到标签对应150条数据,其中有0,1,2 三种标签。

1.2 数据集乱序

随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)

对特征数据和标签数据采用相同的随机数种子,可以保证随机之后特征和标签一一对应

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

打印y_data 来看随机之后的乱序情况

1.3 生成测试集和训练集

将打乱后的数据集分割为永不相见的训练集和测试集(引用一下曹健老师的话,描述的很形象),训练集为前120行,测试集为后30行(训练集和测试集一般取4:1)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

1.4 配成(特征、标签)对

采用from_tensor_slices把数据的输入特征和标签配对打包,每32组数据打包为一个batch(batch的数量一般为2的n次方),后面将以batch为单位,将数据喂入神经网络

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

2. 搭建网络

2.1 定位网络中所有可训练参数(主要是W和b)

这里搭建的神经网络只用一层,输入特征是4个,标签是3个,因此网络如下所示:

按照网络,定义w和b

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

2.2 定义超参数以及记录的列表

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

3. 参数优化以及测试效果

训练部分:(这部分参照后面代码理解)

两层for循环来更新参数w1和b1

  • 第一层for循环针对数据集,循环次数用epoch(在超参数定位里epoch=500)
  • 第二层for循环针对batch的,用step表示(由于数据又120个,每个batch为32,因此需要循环4次)

在with结构种

  • 前向传播过程计算y
  • 计算总损失函数loss,这里采用均方误差计算loss
  • 损失函数loss分别对参数w1和b1计算偏导数
  • 更新参数w1和b1,这里采用最基本的梯度下降法更新参数

打印出这一轮epoch的损失函数值:由于每次batch循环4次,因此总loss/4就是每次平均loss

最后将每次epoch里的平均loss记录在train_loss_results,用来最后最后画图

测试部分:(这部分参照后面代码理解)

在epoch循环中继续嵌套一个batch级别的for循环

  • 采用上述跟新的w1和b1,输入测试集x_test计算出y
  • 对y进行softmax正规化处理,转成概率数据
  • 在概率数据中找到最大值索引,即是该条数据的分类
  • 识别每个计算出的分类是不是符合测试集特征实际的y_data
  • 计算每次epoch下的测试准确率acc(所有识别正确的数量/总数量)并记录在test_acc中,用来最后画图
# 训练部分
for epoch in range(epoch):  # 数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all / 4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

将上述所有的代码在pycharm下运行,并打印每次epoch下的loss和acc:

可以看到刚开始loss较大,acc很低,最后loss很小,acc为1。

4. 绘制loss和acc的图像

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

从曲线上可以看出神经网络每个epoch的学习过程,越到后面准确率越高,损失函数值越低。

学习来源:人工智能实践:Tensorflow笔记

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝色蛋黄包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值