n个六边形排成一行,相邻两个六边形共用一条边,如下图所示:
记这个图形的生成树个数为t(n)(由于每条边都是不同的,不存在同构的问题)。那么t(1)=6,t(2)=35……
给出n,求mod 1000000007
Input
第一行给出数据组数T。
之后每一行给出一个正整数n。
T大约为50000,n<=10^18。
Output
每组数据输出一行答案。
Sample Input
2
2
12345678987654321
Sample Output
不太会。。。。。
# include <stdio.h>
# include <algorithm>
# include <string.h>
# include <math.h>
using namespace std;
struct node
{
__int64 m[3][3];
};
const __int64 mod=1000000007;
node f(node a,node b)
{
int i,j,k;
node c;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
{
c.m[i][j]=0;
for(k=0; k<3; k++)
{
c.m[i][j]=(c.m[i][j]+((a.m[i][k]*b.m[k][j]))+mod)%mod;
//c.m[i][j]%=mod;
}
}
return c;
}
node quick(node origin,__int64 n)
{
node answ;
memset(answ.m,0,sizeof(answ));
for(int i=0; i<3; i++)
answ.m[i][i]=1;
while(n)
{
if(n%2==1)
{
answ=f(origin,answ);
}
origin=f(origin,origin);
n/=2;
}
return answ;
}
int main()
{
int t;
__int64 n;
node o,answ;
memset(o.m,0,sizeof(o.m));
o.m[0][0]=6;
o.m[0][1]=1;
o.m[1][0]=-1;
o.m[2][0]=1;
o.m[2][2]=1;
memset(answ.m,0,sizeof(answ.m));
answ.m[0][0]=7;
answ.m[0][1]=1;
answ.m[0][2]=1;
node hehe[80];
hehe[1]=o;
for(int i=2; i<70; i++)//预处理
{
hehe[i]=f(hehe[i-1],hehe[i-1]);
}
while(~scanf("%d",&t))
{
while(t--)
{
scanf("%I64d",&n);
if(n==1)
printf("6\n");
else if(n==2)
printf("41\n");
else
{
node B;
memset(B.m,0,sizeof(B.m));
n--;
for(int i=0; i<3; i++)
B.m[i][i]=1;
for (int i = 1; n; i++, n >>= 1)
{
if (n&1)
B=f(B, hehe[i]);
}
node t=f(answ,B);
printf("%I64d\n",(t.m[0][0]-1+mod)%mod);
}
}
}
return 0;
}
41
733521876