题目描述
给定一个无序的整数数组,找到其中最长上升子序列的长度。
样例
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
题解
方法1:
- 遍历数组中的每一个元素,dp[i]存储以第i个元素作为子序列的最后一个字符时,0~i中最大递增的子序列的长度
- 在0~i中,任何小于nums[i]的元素都可以作为子序列倒数第二个位置上的数,选择一个使该数结尾可以使最终递增子序列长度最大的元素 dp[i]=max{dp[j]+1,(0≤j<i,nums[j]<nums[i])}
- 如果0~i中没有一个数小于nums[i],那么dp[i]=1,说明以nums[i]结尾的递增子序列只有它本身
- 该方法的时间复杂度为O(N2)
public int lengthOfLIS(int[] nums) {
if(nums==null||nums.length==0)
return 0;
int max=0;
//dp[i]表示在以nums[i]结尾的情况下,0~i范围中最长递增的子序列的长度
//在0~i中任何小于nums[i]的数都可以作为倒数第二个数,目标应该是选择一个使其以i结尾的递增子序列长度最长
int dp[]=new int[nums.length];
for(int i=0;i<nums.length;i++) {
dp[i]=1;
for(int j=0;j<i;j++) {
if(nums[i]>nums[j])
dp[i]=Math.max(dp[i], dp[j]+1);
}
max=Math.max(max, dp[i]);
}
return max;
}
方法2:
- 声明一个长度为N的数组end,end[i]存储了在所有长度为i+1的递增子序列中,最小结尾的数,初始end[0]=nums[0]
- 变量right表示end的有效区域边界,在遍历元素的过程中,判断end的有效区域中是否存在一个元素大于num[i],若存在则更新该位置的值,置为nums[i],因为要保存每个长度下最小结尾的数;若不存在则有效区域向右扩一个位置,即递增子序列的长度+1;
- 在end的有效区域中查找时采用二分查找,因为有效区域中的元素均是递增排列的。
- 所以该方法的时间复杂为O(NlogN)
- 最终最大递增子序列的长度记为right+1
//end[i]存储了在所有长度为i+1的递增子序列中,最小的结尾的数
//当遍历第i个元素时在end的有效区内查找(使用二分查找的方式),是否存在一个元素大于等于nums[i]
//若不存在则有效区向右扩一个,即递增子序列的长度也加1
public int lengthOfLIS1(int[] nums) {
if(nums==null||nums.length==0)
return 0;
int[]end=new int[nums.length];
end[0]=nums[0];
int right=0;
for(int i=1;i<nums.length;i++) {
int l=0,r=right;
while(l<=r) {
int mid=l+(r-l)/2;
if(nums[i]>end[mid])
l=mid+1;
else
r=mid-1;
}
right=Math.max(right, l);
end[l]=nums[i];
}
return right+1;
}