李雨晴yu
码龄5年
关注
提问 私信
  • 博客:8,902
    8,902
    总访问量
  • 17
    原创
  • 1,014,368
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2019-06-08
博客简介:

haha_426的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得0次评论
  • 获得42次收藏
创作历程
  • 17篇
    2021年
成就勋章
TA的专栏
  • 玛丽莲梦马路的学习笔记
    12篇
  • 我跌跌撞撞在刷题
    3篇
  • 玛丽莲梦马路的实验
    2篇
兴趣领域 设置
  • 人工智能
    图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

俺的力扣之旅03

1、题目:把字符串转化为数字输出,前面是空格符号要去掉,正负号判断,接着如果是数字就对这个字符串进行转换,为其他字符(英文或者其他特殊字符就要结束),例:2、采用正则式判断字符串能否进行转换,用max()和min()来控制数字范围。代码如下:简单到惊呆我八百年!!class Solution(object): def myAtoi(self, s): """ :type s: str :rtype: int "".
原创
发布博客 2021.11.01 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

俺的力扣之旅02

1、题目:找出两个有序数组的中位数!例子:(就这么简单粗暴嘞)输入:nums1 = [1,3], nums2 = [2]输出:2.00000解释:合并数组 = [1,2,3] ,中位数 22、解题思路:常规想法哈:最暴力的解法就是先拼接两个数组,再根据定义去找出合并后的数组的中位数。但是这个方法实在是太“暴力”了,时间复杂度跟空间度都很大。在这个基础之上进行优化(我在力扣这题的评论下面学到的,太牛啦!!):只循环n/2+1次(n是合并后数组的长度),其实就是刚好走到...
原创
发布博客 2021.10.26 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

俺的力扣之旅01

1、题目:Z字变换(其实是N字变换吧),按照给定行数,把指定字符串从上到下、从左到右进行排列。例子:"PAYPALISHIRING" 行数为3结果:P A H NA P L S I I GY I R2、解题思路:my:一开始想着定义n个数组,n等于输出的行数,就是按行去存储字符。问题在于怎么求得每行的字符,试图找出每行字符的下标之间的联系,无果哈哈哈哈。在这里审题的时候还犯了一个错误,我以为所有输出的时候要像上面一样,中间要有空格隔开,其实并没有,只是字符串顺序
原创
发布博客 2021.10.21 ·
177 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow学习笔记

首先,第一个问题:tensorflow是什么? 它是一个基于数据流图解决数值计算的开源软件库,现主要应用于深度学习,在我的理解上就是tensorflow可以完成神经网络的构建,进行一系列的数据计算(包括线性变化,激活函数等)。 其次,tensor又是啥? 通过搜索各大大神的笔记,这样理解:tensor又叫张量,在整个大框架里面就是一个装数据的桶子,他把所有形式的数据都用N维向量来表示。 就我在b站的学习视频来总结,我认为tensorflow在深度学习上的...
原创
发布博客 2021.09.15 ·
237 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

卷积神经网络CNN

在学习CNN之前需要了解的是神经网络,为了使得计算机像我们人类一样拥有自己思考的能力,不仅仅是在计算一些预测值(就像回归问题一样,只是单纯的去得出一个值),就此诞生了像人类的神经元一样的结构,神经元之间相互联系构成神经网络,可以通过输入数据来得出结果,比如判断图片中是什么动物、判断图片中车辆属于哪一种类型等。1.1 基本结构上图就是神经元的结构,均为输入数据,为权重,b代表偏置值,g(z)为激活函数,a为输出结果。可以参照之前学习过的逻辑回归的结构。神经元是神经网...
原创
发布博客 2021.09.13 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分类算法学习-逻辑回归Logistic Regression

首先需要明确一下回归和分类两大问题的区别:回归是属于预测值地问题,就好比经典的预测房价;而分类问题就是需要判断样本地类别,有二元分类(如邮件是否为垃圾邮件)和多元分类(如输入一则新闻,输出新闻所属地类别)。而逻辑回归是属于分类算法!可用于解决二元分类问题,要注意区别与线性回归。 这个公式为sigmoid函数; 关于逻辑回归使用sigmoid函数的原因:在实际应用时,线性公式求出的值往往都很大,看第一个公式就...
原创
发布博客 2021.09.12 ·
255 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分类算法学习-基于朴素贝叶斯分类器的分类算法

全概率公式:Bi是样本空间的划分,A代表一个事件贝叶斯公式:朴素贝叶斯分类:想象成一个由果索因的过程,一般日常生活中我们常常容易求得的是P( B | A)而真正应用时,P( A | B)更具有现实意义,就比如A代表得肺癌,B代表长期吸烟,根据病人吸烟的概率去求得患癌症的概率时更有意义的。所以在使用朴素贝叶斯进行分类时,B代表类别,就需要求出最大的 p(B | A)综上:y为算法模型输出的预测值朴素贝叶斯分类:...
原创
发布博客 2021.09.09 ·
423 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

分类算法学习-KNN

KNN算法的核心思想就像是一句古语:近朱者赤近墨者黑。核心就是根据样本临近的其他样本来判断它属于哪一类,判断标准就是距离,它跟哪一类隔得近(玩的好,关系好)他就归属于哪一类。所以在KNN算法中主要的三个步骤就是:算距离,找邻居,分类。KNN与K-means有些相像,但后者是无监督学习,而KNN属于监督学习。 在计算距离时常用的距离公式有:欧式距离和曼哈顿距离 注意K代表的含义:类别数,所以K的取值非常重要,K太小时会造成过拟合,过大会造成欠拟合。K的取值一般不...
原创
发布博客 2021.09.06 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分类算法学习-决策树

作为一种基本的分类算法,决策树的概念如同他的名字一样,是基于树这一定义而言的,通过特定的标准选择内部节点(就是树的分叉点)。决策树最为主要的三个步骤就是:特征选择,构建决策树,剪枝。1、需要了解的是一些基本概念:信息熵:所有可能发生事件所带来的信息量的期望 符号频率越均匀,信息熵就越高条件熵:在一定条件下,一个特征的熵信息增益:代表的是一个特征能为分类系统带来多少信息:信息熵-条件熵信息增益率: 该特征的信息增益除以熵Gini系数:在CA...
原创
发布博客 2021.09.03 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

numpy库的函数学习

1、np.eye(N, M=None, k=0, dtype=<class ‘float’>, order=‘C’)创建一个N行M列的矩阵:对角阵元素全部为1,其余位置全部为0,相当于就是一个单位矩阵。dtype:返回数组的类型,k表示的是对角线上的第一个元素的位置,为1时表示向右移一个单位,-1时表示向左移一个单位。例:a=np.eye(3,5,1)[[0. 1. 0. 0. 0.][0. 0. 1. 0. 0.]...
原创
发布博客 2021.09.01 ·
2317 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏

matplotlib库函数学习笔记

1、plt.plot(x,y,format_string,**kwargs) 用于绘制图像 与show()结合使用x表示x轴数据;format_string控制曲线的格式字串,包括颜色字符,风格字符,和标记字符**kwards:color 颜色linestyle 线条样式marker 标记风格markerfacecolor 标记颜色markersize 标记大小 等等...
原创
发布博客 2021.09.01 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python相关函数笔记

1、enumerate()函数 用于枚举,返回的是元组基本参数:sequence:输出的数据,可以是列表、元组等index:数据返回时的索引值,没有赋值时从0开始2、map(函数名,数据)函数map将函数运用在每一个数据,返回一个列表3、lambdaargument_list: expression基本参数:argument_list:传入的数据expression:函数执行的操作例:add=lambda x, y: x+y,定义了加法函数...
原创
发布博客 2021.09.01 ·
1222 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

pandas库函数学习笔记

1、pandas.read_csv函数 用于读取文件基本参数:filepath_or_buffer 文件的路径header 作为每一列的别名(即第一行的值),当文件没有设置列名时:默认值为0:表示使用文件中原来存在的列名,也可能就是第一行的数据;当设置值为None时:表示用【0,1,2....】来作为列名names 用于结果的列表名称,再输出时自己设定列名,可以用列表的形式来定义,比如names=['population','profite'],当header=None时,...
原创
发布博客 2021.09.01 ·
359 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

分类算法学习笔记-SVM

在看了很多篇博客之后,作为小白的我写一下我对svm的理解。 1、svm(support vector machine)是一种二分类的方法,之所以被叫做:支持向量机,在我的理解上是因为算法要求找到一个基于向量的超平面,这个超平面将数据样本来进行一个划分。它的基本模型被称作:间隔最大的分类器,原因在于所找到的超平面需要有最大的几何间隔,需要具有更好的鲁棒性,能够很好的区分数据样本。 2、所以,第一步要做的就是找到这个超平面,超平面可以用来定义,以此得知要建立超平面就需要求出w和b...
原创
发布博客 2021.08.30 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

逻辑回归+正则化的python实现

逻辑回归:适用于解决分类问题,区别于线性回归:线性回归用于解决预测性的问题,都是连续性的值,而逻辑回归则需要将数据进行分类。正则化:为了解决过拟合的问题。(提一句 过拟合:就是画出来的曲线跟训练集完全吻合,丝毫不差,把很多噪声都弄进去了,就是很多不必要的信息也算入。当使用测试集的时候就不能很好地进行泛化咯!)正则化就是使用对一些特征的惩罚来减少这些特征的影响,我觉得其实就是在某种程度上减少特征,把过拟合向正常拟合靠近。注意:正则化参数的大小是很重要的!!实验:首先!导入所需要用到的库:i.
原创
发布博客 2021.08.21 ·
1570 阅读 ·
2 点赞 ·
0 评论 ·
21 收藏

线性回归+梯度下降的python实现

首先需要导入所需要用到的三个库:numpy、pandas、matplotlibimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt读取文件:用read _csv函数进行读取path = r'C:\Users\噗噗噗噗了个pi\Desktop\machine learning-data\ex1data1.txt'#文件位置data = pd.read_csv(path, header=None,name
原创
发布博客 2021.08.18 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习-反向传播算法

在学习反向传播算法之前,需要先弄清楚前向传播。<-----------------------------------------前向传播求损失,反向传播求误差--------------------------------------->由图可见,输入层和权重经过线性变化之后会得到Z(即图中的Z1和Z2),在隐藏层经过激活函数(如sigmoid函数)得到A(即图中的a1和a2),第二层隐藏层也是如此计算,最后得到输出值,这个过程就叫做前向传播。得到的输出值与实际的值y存在误差.
原创
发布博客 2021.07.28 ·
826 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多