js实现二叉树结构及其操作

    //二叉搜索树结构(BST)
	function BinarySearchTree(){
		//每一个节点的数据结构
		function Node(key){
			this.key = key;
			this.left = null;
			this.right = null;
		}
		this.root = null;
		//向树中插入值
		this.insert = function(key){
			var node = new Node(key);
			if(this.root === null){
				this.root = node;
			}else{
				this.insertNode(this.root,node);
			}
		}
		//插入节点辅助函数
		this.insertNode = function(node,newNode){
			if(newNode.key < node.key){
				if(node.left === null){
					node.left = newNode;
				}else{
					this.insertNode(node.left,newNode);
				}
			}else{
				if(node.right === null){
					node.right = newNode;
				}else{
					this.insertNode(node.right,newNode);
				}
			}
		}
		//先序遍历 根左右
		this.preOrder = function(node,res=[]){
			if(node !== null){
				res.push(node.key);
				this.preOrder(node.left,res);
				this.preOrder(node.right,res);
				return res;
			}
		}
		//中序遍历 左根右
		this.inOrder = function(node,res=[]){
			if(node !== null){
				this.inOrder(node.left,res);
				res.push(node.key);
				this.inOrder(node.right,res);
				return res;
			}
		}
		//后序遍历 左根右
		this.postOrder = function(node,res=[]){
			if(node !== null){
				this.postOrder(node.left,res);
				this.postOrder(node.right,res);
				res.push(node.key);
				return res;
			}
		}
		//查找树中最大值
		this.min = function(node){
			if(node){
				while(node && node.left){
					node = node.left;
				}
				return node.key;
			}
			return null;
		}
		//查找树中的最大值
		this.max = function(node){
			if(node){
				while(node && node.right){
					node = node.right;
				}
				return node.key;
			}
			return null;
		}
		//查找一个特定的值
		this.search = function(key){
			return this.searchNode(this.root,key);
		}
		//查找一个特定的值的辅助函数
		this.searchNode = function(node,key){
			if(node === null){
				return false;
			}
			if(node.key === key){
				return true;
			}
			if(node.key < key){
				return this.searchNode(node.right,key);
			}
			if(node.key > key){
				return this.searchNode(node.left,key);
			}
		}
		//移除某一个节点
		this.remove = function(key){
			this.root = this.removeNode(this.root,key);
		}
		this.removeNode = function(node,key){
			if(node === null){
				return null;
			}
			if(node.key < key){
				this.removeNode(node.right,key);
			}else if(node.key > key){
				this.removeNode(node.left,key);
			}else{
				if(node.left === null && node.right === null){
					return null;
				}else if(node.left === null){
					return node.right;
				}else if(node.right === null){
					return node.left;
				}else{
					var tempNode = this.findMinNode(node.right);
					node.key = tempNode.key;
					node.right = this.removeNode(node.right,tempNode.key);
					return node;
				}
			}
		}
		this.findMinNode = function(node){
			while(node && node.left){
				node = node.left;
			}
			return node;
		}
	}
	var tree = new BinarySearchTree();
	tree.insert(11);
	tree.insert(7);
	tree.insert(15);
	tree.insert(5);
	tree.insert(3);
	tree.insert(9);
	tree.insert(8);
	tree.insert(10);
	tree.insert(13);
	tree.insert(12);
	tree.insert(14);
	tree.insert(20);
	tree.insert(18);
	tree.insert(25);
	tree.insert(6);
	console.log(tree.preOrder(tree.root));
	console.log(tree.inOrder(tree.root));
	console.log(tree.postOrder(tree.root));
	console.log(tree.min(tree.root));
	console.log(tree.max(tree.root));
	console.log(tree.search(11));
	console.log(tree.search(1));
	tree.remove(11);
	console.log(tree.search(11));

 

展开阅读全文

没有更多推荐了,返回首页