(block.cpp/c/pas)
【题目描述】
春春幼儿园举办了一年一度的“积木大赛”。今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是ℎi。
在搭建开始之前,没有任何积木(可以看成块高度为 0 的积木)。接下来每次操作,小朋友们可以选择一段连续区间[L,R],然后将第L块到第R块之间(含第 L 块和第 R 块)所有积木的高度分别增加1。
小M是个聪明的小朋友,她很快想出了建造大厦的最佳策略,使得建造所需的操作次数最少。但她不是一个勤于动手的孩子,所以想请你帮忙实现这个策略,并求出最少的操作次数。
【输入】
输入文件为 block.in
输入包含两行,第一行包含一个整数n,表示大厦的宽度。
第二行包含n个整数,第i个整数为ℎi。
【输出】
输出文件为 block.out
仅一行,即建造所需的最少操作数。
【输入输出样例】
block.in | block.out |
5 2 3 4 1 2 | 5 |
【样例解释】
其中一种可行的最佳方案,依次选择
[1,5] [1,3] [2,3] [3,3] [5,5]
【数据范围】
对于 30%的数据,有1 ≤ n ≤ 10;
对于 70%的数据,有1 ≤ n ≤ 1000;
对于 100%的数据,有1 ≤ n ≤ 100000,0 ≤ hi ≤ 10000。
【思路】
贪心+递归求解。
对于一个区间而言,每次增加直到满足区间最小值,这时候重新划分了两个子区间,递归求解。因为每次只能增加1高度所以累计min而且需要改动A数组。
【代码】
1 //贪心 + 递归求解 2 #include<iostream> 3 using namespace std; 4 5 int n; 6 int A[100010]; 7 8 int search(int x,int y) { 9 if(y==x) return A[x]; else if(y<x) return 0; 10 int min=1<<30,j; 11 for(int i=x;i<=y;i++) if(A[i]<min) min=A[j=i]; 12 for(int i=x;i<=y;i++) A[i]-=min; 13 return search(x,j-1)+search(j+1,y)+min; 14 } 15 16 int main() { 17 ios::sync_with_stdio(false); 18 cin>>n; 19 for(int i=1;i<=n;i++) cin>>A[i]; 20 cout<<search(1,n); 21 return 0; 22 }