洛谷1265 公路修建

洛谷1265 公路修建

本题地址: http://www.luogu.org/problem/show?pid=1265

题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。
    修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。
    政府审批的规则如下:
    (1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;
    (2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

    (3)其他情况的申请一律同意。
    一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。
    当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。
    你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

第一行一个整数n,表示城市的数量。(n≤5000)
  以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

输出格式:

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

输入输出样例

输入样例#1:

4

0 0

1 2

-1 2

0 4

输出样例#1:

6.47

说明

修建的公路如图所示:

 

 

【思路】

   MST。

   首先明确题目中的(2)是不可能出现的:

     设三边为abc,根据所选可以得出a<b,b<c,c<a 这显然是不成立的。

   所以本题亦不用考虑所谓“下一轮”,一个MST解决。

   Prim处理本题更漂亮一些。

 

【代码】

 

 1 #include<cstdio>
 2 #include<cmath>
 3 using namespace std;
 4 
 5 const int maxn = 5000+10;
 6 const int INF=1e8;
 7 
 8 int n;
 9 int x[maxn],y[maxn];
10 double dis[maxn];
11 int vis[maxn];
12 
13 inline double dist(int x,int y,int xx,int yy) {
14     return sqrt((double)(x-xx)*(x-xx)+(double)(y-yy)*(y-yy));
15 }
16 
17 int main() {
18     scanf("%d",&n);
19     for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
20     
21     //prim 
22     for(int i=2;i<=n;i++) dis[i]=INF;
23     
24     int k;
25     double ans=0,_min;
26     for(int i=1;i<=n;i++) 
27     {
28         _min=INF;
29         for(int j=1;j<=n;j++) if(!vis[j] && dis[j]<_min) _min=dis[k=j];
30         if(_min==INF) break;
31         vis[k]=1;
32         ans+=_min;
33         for(int j=1;j<=n;j++)if(!vis[j]){
34             double d=dist(x[k],y[k],x[j],y[j]);
35             if(d<dis[j]) {       //区别于最短路 
36                 dis[j]=d;
37             }
38         }
39     }
40     printf("%.2lf\n",ans);
41     return 0;
42 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值