3:汉诺塔问题
总时间限制:1000ms内存限制: 65536kB
描述
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到中间的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。
假定圆盘从小到大编号为1, 2, …
输入
输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。
输出
输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如 a->3->b 的形式,即把编号为3的盘子从a杆移至b杆。
样例输入
2 a b c
样例输出
a->1->c
a->2->b
c->1->b
思路
对于这种递归的问题,不要太纠结于代码是如何运行的,要宏观的把握,把玩游戏时候的步骤抽象起来,具体怎么挪动让程序去做。
对于此问题,是模拟连续发生的动作——在三根柱子上移动盘子
方法(来自北京大学 李戈老师):
- 连续发生的动作是什么?——假设有一个函数能给出答案:hanoi(n,x,z,y)表示有n个盘子,三个柱子标号为x,y,z,盘子从 x 柱子借助 z 柱子挪到 y 柱子。目标柱子为 y(从左往右柱子序列为x,y,z,y是中间的那个柱子,所有的盘子起始在x柱子上)
- 不同动作之间的关系是什么?——利用假定的函数分析如何解决问题:
- hanoi(n-1,x,y,z) //首先要把最大的盘子上面的盘子(共n-1个),借助目标柱子 y 移动到临时柱子 z 上
- n号盘子从 x 移到 y //让最大的盘子(n号盘子)直接移动到目标柱子 y 上
- hanoi(n-1,z,x,y) //将临时柱子 z 上的n-1个盘子重复上面的过程求解
- 递归终止的边界条件是什么?——最简单的情况下的解:只有一个盘子,应该怎么挪动
- 这一个盘子直接 从 x 号柱子移动到 y 号柱子。
按照这种思路,不管起始柱子、目标柱子是哪个,都可以通过变换函数的参数位置来求解。
代码
#include<iostream>
using namespace std;
void hanoi(int n,char x,char z,char y)
{
if(n==1)
cout<<x<<"->"<<n<<"->"<<y<<endl;
else
{
hanoi(n-1,x,y,z);
cout<<x<<"->"<<n<<"->"<<y<<endl;
hanoi(n-1,z,x,y); //这里也是n-1
}
}
int main()
{
int n;//盘子的数目
char x,y,z;//杆子的编号
cin>>n;
cin>>x>>y>>z;
hanoi(n,x,z,y);//n个盘子,从x借助z移动到y;注意是从哪个柱子移动到哪个
return 0;
}