论文标题
Connecting Joint-Embedding Predictive Architecture with Contrastive Self-supervised Learning 将联合嵌入预测架构与对比自监督学习相结合
论文链接
Connecting Joint-Embedding Predictive Architecture with Contrastive Self-supervised Learning论文下载
论文作者
Shentong Mo, Shengbang Tong
内容简介
本文提出了一种新颖的框架C-JEPA(对比-JEPA),旨在将联合嵌入预测架构(JEPA)与方差-不变性-协方差正则化(VICReg)策略相结合,以解决JEPA在无监督视觉表征学习中的两个主要局限性:I-JEPA中的指数移动平均(EMA)在防止模型崩溃方面的无效性,以及I-JEPA预测机制在准确学习补丁表示均值方面的不足。通过理论和实证评估,C-JEPA显著提高了视觉表征学习的稳定性和质量。在ImageNet-1K数据集上进行预训练时,C-JEPA在线性探测和微调性能指标上表现出快速且改进的收敛性,展示了其在无监督学习领域的潜力。
分点关键点
-
C-JEPA框架