论文标题
Flatten Anything: Unsupervised Neural Surface Parameterization 扁平化任何物体:无监督神经表面参数化
论文链接
Flatten Anything: Unsupervised Neural Surface Parameterization论文下载
论文作者
Qijian Zhang, Junhui Hou, Wenping Wang, Ying He
内容简介
本文提出了一种名为“扁平化任何物体模型”(FAM)的无监督神经网络架构,旨在实现全局自由边界的表面参数化。传统的参数化方法通常依赖于高质量的网格和繁琐的手动预处理,难以满足当前普通3D数据的处理需求。FAM通过学习3D几何表面上的点与自适应变形的2D UV坐标之间的逐点映射,简化了这一过程。该模型构建了具有特定功能的几何可解释子网络,包括表面切割、UV变形、展开和包裹,形成一个双向循环映射框架。与以往方法相比,FAM直接操作离散表面点,无需连接信息,显著降低了对网格质量的要求,并能够处理复杂拓扑结构。实验结果表明,FAM在参数化质量和处理复杂几何形状方面具有显著优势。
分点关键点
-
FAM模型架构
- FAM是一种无监督学习框架,通过学习3D点与2D UV坐标之间的映射,实现全局自由边界的表面参数化。该模型包含多个子网络,分别负责表面切割、UV变形、展开和包裹,形成双向循环映射。
- FAM是一种无监督学习框架,通过学习3D点与2D UV坐标之间的映射,实现全局自由边界的表面参数化。该模型包含多个子网络,分别负责表面切割、UV变形、展开和包裹,形成双向循环映射。