1. 弧长定义
设 B 样条曲线为 C(u),参数 u ∈ [a, b]。
其弧长 L 定义为:
L = ∫ₐᵇ ‖C′(u)‖ du
其中:
- C′(u) 是曲线对参数 u 的一阶导数(切向量),
- ‖C′(u)‖ 表示该向量的欧几里得范数(即速度大小)。
由于该积分通常无解析解,需采用高精度数值积分方法。
2. 自适应辛普森法基本思想
自适应辛普森法通过递归细分区间,在函数变化剧烈的区域自动加密采样,在平滑区域减少计算,从而在保证精度的同时提高效率。
对任意子区间 [uₗ, uᵣ],定义:
- S(uₗ, uᵣ) 为用单段辛普森公式在 [uₗ, uᵣ] 上的积分近似值;
- S(uₗ, uₘ) + S(uₘ, uᵣ) 为将区间二分后两段辛普森公式的和(uₘ 为中点)。
若两者之差小于容差,则接受粗略估计;否则递归细分。
3. 辛普森公式(单段)
对区间 [uₗ, uᵣ],中点 uₘ = (uₗ + uᵣ) / 2,步长 h = uᵣ − uₗ。
单段辛普森近似为:
S(uₗ, uᵣ) = (h / 6) ⋅ [ f(uₗ) + 4⋅f(uₘ) + f(uᵣ) ]
其中:
f(u) = ‖C′(u)‖
4. 误差估计与递归准则
定义误差估计为:
E = | S(uₗ, uₘ) + S(uₘ, uᵣ) − S(uₗ, uᵣ) |
若 E ≤ 15⋅ε(ε 为用户指定的局部容差),则接受更精确的组合值作为该区间的积分结果:
∫ᵤₗᵘʳ f(u) du ≈ S(uₗ, uₘ) + S(uₘ, uᵣ) + E / 15
否则,将 [uₗ, uₘ] 和 [uₘ, uᵣ] 分别递归处理,容差减半(即 ε/2)。
注:因子 15 源于辛普森法的误差阶 O(h⁵),理论推导表明真实误差 ≈ E / 15。
5. 算法步骤
-
设定全局容差 tol(如 1e−6)。
-
调用递归函数 AdaptiveSimpson(a, b, f, tol):
- 计算 S₁ = S(a, b)
- 计算中点 m = (a + b)/2
- 计算 S₂ = S(a, m) + S(m, b)
- 若 |S₂ − S₁| ≤ 15⋅tol,则返回 S₂ + (S₂ − S₁)/15
- 否则返回
AdaptiveSimpson(a, m, f, tol/2) + AdaptiveSimpson(m, b, f, tol/2)
-
最终弧长 L 即为该递归函数的返回值。
6. 优点与适用性
- 自动聚焦高曲率区域:在 B 样条拐点或曲率突变处自动加密采样。
- 高效且高精度:相比固定步长方法,计算量更少而精度更高。
- 适用于任意光滑曲线:B 样条通常具有 C² 连续性,非常适合此方法。
7. 注意事项
- 函数 f(u) = ‖C′(u)‖ 必须在 [a, b] 上连续(B 样条满足此条件)。
- 初始容差 tol 控制整体精度,典型值为 1e−6 至 1e−9。
- 为防止无限递归,可设置最大递归深度(如 20 层)。
此方法广泛应用于 CAD/CAM、机器人轨迹规划和动画路径长度计算等场景,是求解参数曲线弧长的工业级标准技术之一。
4453

被折叠的 条评论
为什么被折叠?



