- 博客(34)
- 收藏
- 关注
原创 数控机床中,进行前瞻速度规划时,根据几何约束限制计算的拐角过渡速度
在数控机床的前瞻速度规划中,拐角过渡速度的计算需考虑多种几何约束,以确保加工路径的平滑性、精度和效率。本文介绍了基于几何约束的主要拐角过渡速度计算方法及其对应的极限速度计算方法。
2025-09-05 21:14:15
564
原创 两条平面直线之间通过三次多项式曲线进行过渡的方法介绍
在工程设计、道路规划或机器人路径规划中,常需要使用一条光滑的曲线(如三次多项式曲线)来平滑连接两条平面直线。以下介绍一种常见的方法,实现两条直线之间的 G¹连续(即位置和切线方向连续)的三次多项式过渡。
2025-09-05 20:59:13
279
原创 三阶Bezier曲线曲率极值及对应的u的计算方法
三阶(三次)Bezier曲线的曲率极值及其对应的参数 u 的计算是一个复杂的非线性优化问题。由于三阶Bezier曲线是参数化曲线,其曲率表达式较为复杂,通常无法通过解析方法直接求得所有极值点,但可以通过求解曲率导数为零的方程来获得极值点对应的参数u∈[0,1],本文介绍了采用求曲率倒是为0的方法计算得到参数u的过程。
2025-09-04 22:00:35
710
原创 B样条曲线,已知曲线上的某个点到起点的距离,确定这个点的参数u的值的方法
本文介绍了B样条曲线一种逆运算:已知曲线上的某个点到起点的距离,确定这个点的参数u的值的方法,介绍了牛顿-拉夫逊法和预计算弧长查找表两种方法的使用方法及应用场景,实际应用时可以进行相应的选取。
2025-09-03 22:31:21
342
原创 三阶Bezier曲线,已知曲线上一点到曲线起点的距离为L,计算这个点的参数u的方法
本文介绍了几种三阶Bezier曲线逆运算的方法:根据长度确定参数u,由于没有解析解,所以采用本文介绍的几种方法可以快速确定参数u的值。
2025-09-03 22:24:00
186
原创 数控机床相邻轨迹最大过渡速度计算方法介绍
在数控机床(CNC)加工中,相邻轨迹之间的最大过渡速度直接影响加工效率和表面质量。合理计算该速度,可以在满足机床动力学约束(加速度、加加速度)和路径几何特性的前提下,实现平滑、高效的刀具运动。
2025-09-02 20:23:21
441
原创 B样条曲线节点消去方法介绍
B样条曲线的节点消去(Knot Removal)是几何建模与计算机辅助设计中的重要技术,其目标是在尽可能保持曲线形状不变的前提下,移除一个或多个节点,从而简化曲线的表示形式。
2025-09-02 20:10:16
615
原创 B样条曲线在节点u处添加节点的操作方法
在B样条曲线中,节点插入(Knot Insertion)是一项基本且重要的操作,它允许我们在不改变曲线形状的前提下,在节点向量中添加一个新的节点。本文介绍了插入节点及节点插入后控制点修正的方法,按照此方法可以实现B样条曲线节点的插入,为后续操作(如分割、升阶)做准备非常有用。
2025-09-01 21:00:35
285
原创 有N个控制点的三次B样条曲线转化为多段三阶Bezier曲线的方法
将具有N 个控制点的三次B样条曲线转换为多段三阶Bezier曲线,是计算机图形学和CAD系统中常见的操作。本文介绍了通过插入节点的方式实现将B样条曲线转化成多段Bezier曲线的方法,具有很好的实用价值。
2025-09-01 20:54:44
489
原创 SCARA 机器人工具标定方法
本文介绍了一种通过采集点位建立线性方程组,通过解最小二乘方程组实现了机器人工具坐标标定的方法,他具有计算简单且标定精度高等优点,值得进行推广使用。
2025-08-31 21:06:45
598
原创 平面椭圆转化为三阶Bezier曲线的方法
本文介绍了一种根据椭圆的方程将椭圆拆分成几段Bezier曲线并计算各个Bezier曲线控制点的方法,有很大的参考价值。
2025-08-31 20:53:54
462
原创 电机余弦速度规划方法介绍
余弦速度规划是一种平滑的运动轨迹规划方法,其速度曲线呈余弦形状,加速度连续,适用于需要低振动、高平稳性的电机控制场景。本文根据给定的条件,计算得到了余弦速度规划预处理计算的各种参数的计算方法。
2025-08-28 21:29:35
463
原创 采用解析法计算SCARA机器人运动学逆解的方法
本文介绍了一种解析解法计算SCARA机器人运动学逆解的方法,通过解析法根据末端位置和姿态分别计算得到两组关节转角,再通过其他条件进行解的选取,完成运动学逆解的全过程。
2025-08-28 21:20:58
287
原创 三阶贝塞尔曲线各点曲率计算方法
三阶贝塞尔曲线的曲率计算公式涉及一阶和二阶导数。曲线由四个控制点P₀-P₃定义,参数方程为P(t)=(1-t)³P₀+3(1-t)²tP₁+3(1-t)t²P₂+t³P₃。曲率κ(t)表示弯曲程度,计算公式为κ(t)=||P'(t)×P''(t)||/||P'(t)||³,其中P'(t)和P''(t)分别为一阶和二阶导数。计算步骤包括:求导、计算叉积模长和速度向量模长,最终得到曲率值。该公式适用于平面参数曲线上任意点的曲率计算。
2025-08-27 22:04:49
543
原创 三阶Bezier曲线长度计算方法介绍
本文介绍了一种三阶Bezier计算长度的方法,可以根据已知条件采用数值积分法快速计算得到曲线的长度,具有比较大的应用价值。
2025-08-27 22:02:23
408
原创 SCARA机器人臂长标定方法介绍
以下是 SCARA机器人臂长标定 的常用方法总结,结合了知识库中的技术细节和实际应用方案,适用于工业现场标定和高精度需求场景。通过合理的方法选择,既可以实现快速的SCARA机器人臂长标定过程。
2025-08-25 22:16:56
385
原创 已知平面上一系列点,拟合生成圆心的方法
已知平面上一系列点,拟合生成最佳匹配圆(即最小二乘圆拟合)的方法如下。该方法通过最小化各点到圆周的距离平方和来确定圆心和半径。以下是使用实现平面上一系列点拟合生成圆心的完整代码,采用,公式清晰、计算高效,可直接运行。% FIT_CIRCLE 圆最小二乘拟合% 输入:% x: 点的x坐标,列向量或行向量% y: 点的y坐标,长度与x相同% 输出:% center: 圆心 [a, b]% R: 半径% 确保输入为列向量x = x(:);y = y(:);
2025-08-25 22:01:34
403
原创 通过vs2017将.c和.h文件编译成静态库的方法
本文介绍了在 Visual Studio 2017 中将 .c 和 .h 文件编译成静态库(.lib 文件)的详细方法,并使用示例进行了说明。
2025-08-24 17:52:40
622
原创 SCARA机器人运动学正解(已知各个关节转角求末端位姿)
本文介绍了使用解析法进行SCARA机器人运动学正解(已知各个关节转角求末端位姿)计算的快速方法,已知关节转角可以快速计算得到机器人末端的位姿。
2025-08-24 17:44:58
141
原创 已知空间三个点计算三点构成的圆弧圆心的方法
本文提供了一种在三维空间中,已知三个不共线的点 A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3),计算三个点构造的空间圆弧的快速计算方法。
2025-08-24 17:34:57
440
原创 已知平面上两个点的位置、切失和曲率构造三阶Bezier曲线的方法
已知平面上两个端点的位置、切向(切矢)和曲率,可以构造一条三次贝塞尔曲线(三阶 Bezier 曲线)来逼近满足这些几何条件的曲线。这种方法在字体设计、路径拟合、CAD 系统中非常常见。本文介绍了常见的根据设定条件构造三阶Bezier曲线的方法。
2025-08-22 21:28:59
831
原创 已知平面圆弧起点、终点、圆心将平面圆弧转化为Bezier曲线的方法
已知起点、终点和圆心的平面圆弧转化为贝塞尔(Bezier)曲线,通常使用三次贝塞尔曲线来近似。因为精确的圆弧无法用单段三次贝塞尔曲线完美表示,但可以通过合理选择控制点实现高精度近似。
2025-08-22 21:22:38
306
原创 空间直线转三阶Bezier曲线的方法
将一条空间直线转换为三阶(三次)Bezier曲线,本质上是用一条三次 Bezier 曲线精确地拟合或表示这条直线。这里介绍了两种拟合Bezier曲线的方法,可以快速生成Bezier曲线。
2025-08-21 20:15:15
272
原创 三阶Bezier曲线转化为三次B样条曲线的方法介绍
摘要:三阶Bezier曲线可精确转换为三次B样条曲线。转换方法为:保持控制点不变(P₀=B₀至P₃=B₃),并采用重复度为4的节点向量[0,0,0,0,1,1,1,1]。这种转换基于基函数的等价性,当节点向量端点重复度等于次数+1时,B样条基函数与Bernstein基函数完全对应,使两条曲线数学等价。该转换过程无信息损失,保持了原Bezier曲线的所有几何特性。
2025-08-20 22:29:17
301
原创 已知起点速度、终点速度、最大速度、距离,最大加速度进行梯形速度规划的详细设计方法
本文介绍了已知起点速度、终点速度、最大速度、距离,最大加速度进行梯形速度规划的详细设计方法
2025-08-19 21:41:46
193
原创 根据给定坐标点进行B样条全局插值的方法
文章提供了一种根据给定的型值点进行全局B样条拟合的控制方法,通过构造线性方程组解线性方程的方式计算得到B样条曲线的控制点,进行得到B样条曲线。
2025-08-17 13:13:38
554
原创 五阶Bezier曲线根据参数u打断分成两段0-1的Bezier曲线的方法
五阶Bezier曲线根据参数u打断分成两段0-1的Bezier曲线的方法,通常指的是将一条完整的Bezier曲线在某个参数值u处分割成两条独立的Bezier曲线。本文通过一个实际的C++编程案例介绍了这一方法。
2025-08-16 21:54:16
455
原创 空间圆弧转三阶Bezier曲线的方法
error('P0, P3, C 三点共线,无法构成圆弧');% direction: 'CCW' 或 'CW' (从法向量方向看)% 根据方向调整法向量(CCW: 正方向;% 计算起点和终点的单位切向量(沿圆弧方向)% 切向量 = n × 半径向量(右手法则)% P0: 起点 [x0, y0, z0]% P3: 终点 [x3, y3, z3]% C: 圆心 [cx, cy, cz]% 根据方向决定切向量方向。
2025-08-14 20:59:08
405
已知一系列三维坐标点,使用五阶Bezier曲线进行最小二乘拟合matlab程序
2025-08-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人