使用辛普森法计算 B 样条曲线弧长

1. 弧长的数学定义

设一条参数化的 B 样条曲线为 C(u),其参数 u 的有效区间为 [a, b]。
该曲线的弧长 L 定义为:

L = ∫ₐᵇ ‖C′(u)‖ du

其中:

  • C′(u) 是曲线对参数 u 的一阶导数(即切向量),
  • ‖C′(u)‖ 表示该切向量的欧几里得范数(即速度大小),
  • a 和 b 是积分上下限(通常取 B 样条非零支撑区间的起止节点)。

由于该积分一般没有解析解,需采用数值积分方法求解。

2. 辛普森法基本公式(复合形式)

将区间 [a, b] 等分为 N 段(N 必须为偶数),步长为:

h = (b − a) / N

记分点为:
u₀ = a,
u₁ = a + h,
u₂ = a + 2h,
…,
uₙ = b (其中 n = N)

则弧长 L 可用复合辛普森公式近似为:

L ≈ (h / 3) ⋅ [ f(u₀) + 4⋅f(u₁) + 2⋅f(u₂) + 4⋅f(u₃) + 2⋅f(u₄) + … + 4⋅f(uₙ₋₁) + f(uₙ) ]

其中函数 f(u) 定义为:

f(u) = ‖C′(u)‖

更紧凑地写为:

L ≈ (h / 3) ⋅ [ f(u₀) + f(uₙ) + 4⋅Σₖ₌₁,₃,₅,…,ₙ₋₁ f(uₖ) + 2⋅Σₖ₌₂,₄,₆,…,ₙ₋₂ f(uₖ) ]

3. 计算步骤

  1. 确定参数区间 [a, b]:
    对于 p 次 B 样条,通常取第一个非零基函数起点到最后一个非零基函数终点,例如 [uₚ, uₘ₋ₚ](m 为节点数)。

  2. 选择偶数分割数 N(如 N = 10, 20, 50, 100;越大精度越高)。

  3. 计算步长
    h = (b − a) / N

  4. 对每个分点 uᵢ = a + i⋅h(i = 0, 1, …, N)

    • 计算曲线在 uᵢ 处的一阶导数 C′(uᵢ)
    • 计算 f(uᵢ) = ‖C′(uᵢ)‖
  5. 按辛普森权重求和

    • 首尾点(i = 0 和 i = N)权重为 1
    • 奇数索引点(i 为奇数)权重为 4
    • 偶数索引点(i 为偶数且 0 < i < N)权重为 2
  6. 计算最终弧长
    L ≈ (h / 3) × 总加权和

4. 示例(N = 4)

若 N = 4,则 h = (b − a)/4,分点为 u₀, u₁, u₂, u₃, u₄。

弧长近似为:

L ≈ (h / 3) ⋅ [ f(u₀) + 4f(u₁) + 2f(u₂) + 4f(u₃) + f(u₄) ]


5. 注意事项

  • N 必须为偶数,否则辛普森法不适用。
  • 若曲线曲率变化剧烈(如高曲率拐点),建议局部加密分段或改用自适应辛普森法。
  • 相比矩形法或梯形法,辛普森法具有 O(h⁴) 的收敛阶,精度更高。
  • 对于光滑的 B 样条曲线(C² 连续),辛普森法通常只需 N = 20~50 即可获得良好精度。

如需更高效率,也可结合自适应辛普森法(Adaptive Simpson’s Rule),在误差大的子区间自动递归细分。

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算 - 简书 遗传算的理论是根据达尔文进化论而设计出来的算: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算,是进化算的一种。 进化算最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算流程 遗传算的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haing2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值