1. 弧长的数学定义
设一条参数化的 B 样条曲线为 C(u),其参数 u 的有效区间为 [a, b]。
该曲线的弧长 L 定义为:
L = ∫ₐᵇ ‖C′(u)‖ du
其中:
- C′(u) 是曲线对参数 u 的一阶导数(即切向量),
- ‖C′(u)‖ 表示该切向量的欧几里得范数(即速度大小),
- a 和 b 是积分上下限(通常取 B 样条非零支撑区间的起止节点)。
由于该积分一般没有解析解,需采用数值积分方法求解。
2. 辛普森法基本公式(复合形式)
将区间 [a, b] 等分为 N 段(N 必须为偶数),步长为:
h = (b − a) / N
记分点为:
u₀ = a,
u₁ = a + h,
u₂ = a + 2h,
…,
uₙ = b (其中 n = N)
则弧长 L 可用复合辛普森公式近似为:
L ≈ (h / 3) ⋅ [ f(u₀) + 4⋅f(u₁) + 2⋅f(u₂) + 4⋅f(u₃) + 2⋅f(u₄) + … + 4⋅f(uₙ₋₁) + f(uₙ) ]
其中函数 f(u) 定义为:
f(u) = ‖C′(u)‖
更紧凑地写为:
L ≈ (h / 3) ⋅ [ f(u₀) + f(uₙ) + 4⋅Σₖ₌₁,₃,₅,…,ₙ₋₁ f(uₖ) + 2⋅Σₖ₌₂,₄,₆,…,ₙ₋₂ f(uₖ) ]
3. 计算步骤
-
确定参数区间 [a, b]:
对于 p 次 B 样条,通常取第一个非零基函数起点到最后一个非零基函数终点,例如 [uₚ, uₘ₋ₚ](m 为节点数)。 -
选择偶数分割数 N(如 N = 10, 20, 50, 100;越大精度越高)。
-
计算步长:
h = (b − a) / N -
对每个分点 uᵢ = a + i⋅h(i = 0, 1, …, N):
- 计算曲线在 uᵢ 处的一阶导数 C′(uᵢ)
- 计算 f(uᵢ) = ‖C′(uᵢ)‖
-
按辛普森权重求和:
- 首尾点(i = 0 和 i = N)权重为 1
- 奇数索引点(i 为奇数)权重为 4
- 偶数索引点(i 为偶数且 0 < i < N)权重为 2
-
计算最终弧长:
L ≈ (h / 3) × 总加权和
4. 示例(N = 4)
若 N = 4,则 h = (b − a)/4,分点为 u₀, u₁, u₂, u₃, u₄。
弧长近似为:
L ≈ (h / 3) ⋅ [ f(u₀) + 4f(u₁) + 2f(u₂) + 4f(u₃) + f(u₄) ]
5. 注意事项
- N 必须为偶数,否则辛普森法不适用。
- 若曲线曲率变化剧烈(如高曲率拐点),建议局部加密分段或改用自适应辛普森法。
- 相比矩形法或梯形法,辛普森法具有 O(h⁴) 的收敛阶,精度更高。
- 对于光滑的 B 样条曲线(C² 连续),辛普森法通常只需 N = 20~50 即可获得良好精度。
如需更高效率,也可结合自适应辛普森法(Adaptive Simpson’s Rule),在误差大的子区间自动递归细分。
1959

被折叠的 条评论
为什么被折叠?



