1224:最大子矩阵

【题目描述】

已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1×11×1)子矩阵。

比如,如下4×4的矩阵

0  -2 -7  0
9  2 -6  2
-4  1 -4  1
-1  8  0 -2

的最大子矩阵是

9 2
-4 1
-1 8

这个子矩阵的大小是15。

【输入】

输入是一个N×N的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[−127,127]。

【输出】

输出最大子矩阵的大小。

【输入样例】

4
 0 -2 -7  0
 9  2 -6  2
-4  1 -4  1
-1  8  0 -2

【输出样例】

15

题目分析

1.前缀和的理解,对于一个点(i,j)前缀和为:f[i][j] = a[i][j] + f[i][j - 1] + f[i - 1][j] - f[i - 1][j - 1];

每一个框是一个子矩阵,用S1记录每个子矩阵右下角元素的前缀和

黑色框是大矩阵,红色框是要求和的矩阵,记作S0

橙色框记作S1 
蓝色框记作S2
​绿色框记作S3
粉色框记作S4

所以S0=S1-S2-S3+S4

AC代码

#include <bits/stdc++.h>
 
using namespace std;
 
int a[105][105],n,s=-10000000;
int f[105][105];
int main()
{
    cin>>n;
    //输入矩阵
    for(int i=1;i<=n;i++)
    {
    	for(int j=1;j<=n;j++)
    	{
    		cin>>a[i][j];
		}
    }
    //求二维矩阵的前缀和
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			for(int h=1;h<=i;h++)
			{
				for(int l=1;l<=j;l++)
				{
					f[i][j]+=a[h][l];
				}
			}
		}
	}
	for (int i=1;i<=n;i++)//枚举左上角行坐标
	{
        for (int j=1;j<=n;j++)//枚举左上角列坐标
		{
            for (int h=i;h<=n;h++)//枚举右下角行坐标
			{
                for (int l=j;l<=n;l++)//枚举右下角列坐标
				{
                    //开始求出子矩阵的大小和,并比较
                    s=max(s,f[h][l]-f[i-1][l]-f[h][j-1]+f[i-1][j-1]);
                }
            }
        }
    }
    cout<<s;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值