【题目描述】
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1×1)子矩阵。
比如,如下4×4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
【输入】
输入是一个N×N的矩阵。输入的第一行给出N(0<N≤100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N^2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[−127,127]。
【输出】
输出最大子矩阵的大小。
【输入样例】
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
【输出样例】
15
//1224:最大子矩阵
#include<iostream>
#include<cstring>
using namespace std;
int n,sum[101],a[101][101],i,j,maxnum,tmpmax,r[101];
//r数组,记录每列前面的第i行至第j行所有数字相加的和
//例如:r[3]即为第3列第i行至第j行所有数字相加的和
//sum[k]为r[1]+r[2]+……r[k]的和
int main()
{
cin>>n;
for(i=1;i<=n;i++)