partitioner定义:
partitioner的作用是将mapper(如果使用了combiner的话就是combiner)输出的key/value拆分为分片(shard),每个reducer对应一个分片。默认情况下,partitioner先计算key的散列值(通常为md5值)。然后通过reducer个数执行取模运算:key.hashCode%(reducer个数)。这种方式不仅能够随机地将整个key空间平均分发给每个reducer,同时也能确保不同mapper产生的相同key能被分发到同一个reducer。
目的:
如果对数据的整体有很好的了解,可以使用自定义Partitioner来达到reducer的负载均衡,提高效率。
适用范围:
需要非常注意的是:必须提前知道有多少个分区。比如自定义Partitioner会返回5个不同int值,而reducer number设置了小于5,那就会报错。所以我们可以通过运行分析任务来确定分区数。例如,有一堆包含时间戳的数据,但是不知道它能追朔到的时间范围,此时可以运行一个作业来计算出时间范围。
注意:
在自定义partitioner时一定要注意防止数据倾斜。
下面来看给wordCount加了partitioner的示例:
输入数据如下:
zhangsan lisi wangwu renliu
zhangsi liwu wangliu renqi
zhangwu liliu wangqi renba
package com.mr.partitioner;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import com.util.MRUtil;
public class PartitionerTest {
public static class TokenizerMapper extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static class MyPartitioner extends Partitioner<Text, IntWritable>
implements Configurable {
private Configuration conf = null;
@Override
public Configuration getConf() {
return conf;
}
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
@Override
public int getPartition(Text arg0, IntWritable arg1, int arg2) {
String str = arg0.toString();
if (str.startsWith("zh")) {
return 0;
} else if (str.startsWith("l")) {
return 1;
} else if (str.startsWith("w")) {
return 2;
} else if (str.startsWith("r")) {
return 3;
} else {
return 4;
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
MRUtil.removeOutput(conf, "hdfs://192.168.40.194:9000/");
job.setJarByClass(PartitionerTest.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
<span style="color:#ff0000;">job.setPartitionerClass(MyPartitioner.class);</span>
job.setReducerClass(IntSumReducer.class);
<span style="color:#ff0000;">job.setNumReduceTasks(5);</span>
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(
"hdfs://192.168.40.194:9000/input/partitioner"));
FileOutputFormat.setOutputPath(job, new Path(
"hdfs://192.168.40.194:9000/output"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
结果: