【机器视觉】三种常见的模板匹配算法
关于作者
作者:小白熊
作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。
联系邮箱:xbx3144@163.com
科研辅导、知识付费答疑、个性化定制以及其他合作需求请联系作者~
在图像处理与计算机视觉领域,模板匹配是一项基础且强大的技术,它能够帮助我们在图像中定位特定的目标或模式。本文将深入探讨模板匹配技术,介绍基于形状的匹配、基于灰度的匹配以及变形匹配等方面的内容。
一、补充知识点:图像金字塔
模板匹配算法中,离不开图像金字塔的概念。图像金字塔是一种图像表示方法,通过不断降低图像的分辨率来构建一系列不同尺度的图像。也就是说图像金字塔是同一图像不同分辨率的子图集合,是通过原图像不断地向下降低采样而产生的,即由高分辨率的图像(大尺寸)产生低分辨率的近似图像(小尺寸)。
这种多尺度表示不仅有助于减少计算量,还能增强匹配的鲁棒性。在模板匹配中,图像金字塔的引入使得我们可以在不同尺度下搜索目标,从而应对目标尺度变化的问题。
-
简单的图像金字塔:通过直接删除图像的偶数行和偶数列来降低分辨率,这种操作虽然简单但会丢失一定的图像信息。例如有一幅图像,其大小是N×N,删除其偶数行和偶数列后得到一幅(N/2)×(N/2)大小的图像。
-
使用滤波器的金字塔:为了减轻信息丢失,我们可以在下采样前使用滤波器对图像进行预处理。高斯金字塔就是一种常见的使用高斯滤波器进行预处理的图像金字塔。
【重要】图像金字塔在模板匹配中的作用:
1、降维操作,减少计算量,提高匹配速度。我们可以提取更有用的特征。如果一张图片是1024x1024大小的,那么它就有100万多个像素点。图像金字塔是对图像尺寸进行的处理,这样有利于我们提取最’有用’的特征,或者说进行降维操作。
2、增强鲁棒性。通过在不同尺度的图像上进行匹配,可以综合考虑不同尺度下的特征信息,从而增强匹配的鲁棒性。即使目标物体在图像中存在一定程度的形变或遮挡,仍然可以在某些尺度上找到匹配区域。
3、尺度不变性,在底层可以看清楚更多的图像细节,在高层只可以看到轮廓。所以,在目标检测领域,图像中的物体通常很可能是远近不一,大小不一的,此时我们就可以利用金字塔来检测不同尺度下的物体。例如,在人脸检测中,可以使用图像金字塔对输入图像进行多尺度表示,然后在每个尺度上使用模板匹配算法检测人脸区域。这种方法可以应对不同距离下人脸尺度变化的情况,提高检测的准确性和鲁棒性。
二、基于形状的匹配:轮廓与边缘的艺术
基于形状的模板匹配主要依赖于物体的边缘和轮廓信息。这种方法对于形状特征明显的物体特别有效,主要流程如下:
ROI(Region of Interest),在基于形状的匹配中,我们通常会先定义一个感兴趣区域(ROI),然后在这个区域内进行匹配。算法以物体边缘的梯度相关性作为匹配标准,原理是提取ROI中的边缘特征,结合灰度信息创建模板,并根据模板的大小和清晰度的要求生成多层级的图像金字塔模型。接着在图像金字塔层中自上而下逐层搜索模板图像,直到搜索到最底层或者得到确定的匹配结果为止。
三、基于灰度的匹配:像素值的较量
与基于形状的匹配不同,基于灰度的匹配主要依赖于像素值的相似性。这种方法对于光照变化敏感,但在纹理丰富或颜色特征明显的图像中表现良好。NCC(Normalized Cross-Correlation)模板匹配是一种常用的基于灰度的匹配方法,它通过计算模板与图像中各个位置的归一化互相关值来找到最佳匹配位置。
【重要】NCC匹配特点 :
- 快速 ;
- 鲁棒性 ;
- 模糊图像 ;
- 边缘变形图像 ;
- 有纹理的图像;
- 适应光照变化的情况:
【重要】NCC与形状匹配的比较:
(1)NCC优点
- 纹理
- 对焦不清
- 形状轻微变形
(2)形状匹配优点
- 精度高
- 支持X/Y方向缩放
- 支持物体遮挡
- 支持多模板
- 支持非线性光照变化
四、变形匹配:灵活应对复杂场景
在实际应用中,目标物体往往会发生形变或遮挡。为了应对这种情况,我们需要引入变形匹配技术。它基于模板匹配的原理,但增加了对模板变形的处理能力。在变形匹配中,模板可以是图像中的一个区域或对象,而待搜索的图像中可能包含与模板相似但形状、大小或位置有所不同的对象。各向异性匹配是一种能够处理目标物体在不同方向上不同缩放比例的匹配方法。通过引入仿射变换,我们可以更灵活地匹配发生形变的物体。
变形匹配技术在医学图像处理、工业检测等领域有着广泛的应用。通过引入变形模型,我们可以更准确地定位目标物体,即使它们在图像中发生了形变或遮挡。
五、结语
模板匹配技术是一项强大且灵活的图像处理技术。通过结合图像金字塔、基于形状的匹配(包括形状特征提取、模板创建、匹配过程等)、基于灰度的匹配以及变形匹配等方法,我们可以应对各种复杂的图像匹配问题。在未来,随着计算机视觉技术的不断发展,模板匹配技术将在更多领域发挥重要作用。