简介
一句话简单来说,索引的出现其实就是为了提高数据查询的效率,就像书的目录一样。一本500页的书,如果你想快速找到其中的某一个知识点,在不借助目录的情况下,那我估计你可得找一会儿。同样,对于数据库的表而言,索引其实就是它的“目录”。
索引的常见模型
哈希表:哈希表是一种以键-值(key-value)存储数据的结构。处理冲突的方式:链表
特点: 哈希表适用于等值查询的场景,但是在区间查询的速度很慢(因为hash不是有序的)
有序数组:有序数组在等值查询和范围场景查询中的性能都非常优秀。
缺点: 有序数组只适用于静态存储引擎。在需要更新数据的时候就麻烦了,你往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
二叉搜索树:每个节点的左儿子小于父节点,父节点又小于右儿子。
你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。
InnoDB的索引模型
InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。每一个索引在InnoDB里面对应一棵B+树。
B+树是为磁盘及其他存储辅助设备而设计一种平衡查找树(不是二叉树)。B+树中,所有记录的节点按大小顺序存放在同一层的叶子节点中,各叶子节点用指针进行连接。B+树的叶子节点会形成一个有序链表。
根据叶子节点的内容,索引类型分为主键索引和非主键索引。
-
主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。
-
非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引
(secondary index)。
基于主键索引和普通索引的查询有什么区别?
- 如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
- 如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。
索引维护
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
覆盖索引
如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。
由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用
的性能优化手段。
在建立联合索引的时候,如何安排索引内的字段顺序?
- 第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。
索引下推
联合索引(name, age)为例
select * from tuser where name like '张%' and age=10 and ismale=1;
你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录。
- 在MySQL 5.6之前,只能从ID3开始一个个回表。到主键索引上找出数据行,再对比字段值。
- 而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
由于存在前缀索引,在找到相应的name之后,如果不存在索引下推,就会执行相对应的回表,age在回表之后判断。
索引重建
索引在重建的时候,会将索引现存的所有值重新按顺序排列写入,消除了由于部分索引值删除导致的空间浪费,减少页分裂。如果对主键索引重建,会将整个表重新排列。
索引误区
-
使用函数对索引字段进行操作,可能会破坏索引的有序性,因此会进行全表扫描,但还是会使用索引,只是放弃了树搜索。
-
隐式类型转换
mysql>select * from tradelog where tradeid=110717
在这里tradeid是varchar类型的字段,我们在语句中将他强转为int,如下
mysql>select * from tradelog where CAST(tradeid as signed int) = 110717
由第一条我们可知,对索引字段使用函数是不会走树搜索的。
- 隐式编码类型转换
当两张表的字符编码类型不一,在做关联查询的时候,会针对被驱动表的索引字段执行CONVERT函数,由第一条可知。
针对数据量较小,修改方便的表来说,我们可以通过DDL修改表的编码;针对数据量比较大的表来说,我们可以在sql中直接自己类型转换,如下
mysql>select d.* from tradelog l, trade_detail d where d.tradeid = CONVERT(l.tradeid USING utf8) and l.id = 2