常思考->有目标->重实践->善反思

常思考->有目标->重实践->善反思

win64 python pydot安装配置

本文主要是win10,下面anaconda安装pydot以及 .dot文件转化为png。


1. 安装pydot

pip install pydot

这里写图片描述


2. 安装GraphViz

链接如下:
http://www.graphviz.org/Download_windows.php

这里写图片描述

下载完成点击安装,选择好安装目录之后即可。最终将安装路径添加到,环境变量中。

这里写图片描述

这里写图片描述

3. 重启pycharm

这里写图片描述

from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import subprocess
import pydot

clf = tree.DecisionTreeClassifier()
iris = load_iris()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file='tree.dot')
(graph,) = pydot.graph_from_dot_file('tree.dot')
graph.write_png('somefile.png')

生成下面的tree

这里写图片描述


from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import subprocess
import pydot

def visualize_tree(tree):
    """Create tree png using graphviz.

    Args
    ----
    tree -- scikit-learn DecsisionTree.
    feature_names -- list of feature names.
    """
    with open("tree.dot", 'w') as f:
        export_graphviz(tree, out_file=f,
                        feature_names=iris.feature_names)

    command = ["dot", "-Tpng", "tree.dot", "-o", "dt.png"]
    try:
        subprocess.check_call(command)
    except:
        exit("Could not run dot, ie graphviz, to "
             "produce visualization")

clf = tree.DecisionTreeClassifier()
iris = load_iris()
clf = clf.fit(iris.data, iris.target)
tree.export_graphviz(clf, out_file='tree.dot')
visualize_tree(clf)

这个可视化,添加了属性,看起来更直观

这里写图片描述

转载注明出处,并在下面留言!!!

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details/78200078
个人分类: Python
所属专栏: python_in_practice
想对作者说点什么? 我来说一句

pydot环境相关安装包

2016年03月04日 47.43MB 下载

pydot-1.0.28.tar.gz

2015年05月16日 19KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭