kaggle-2美国人口普查年收入50K分类

本文主要是使用xgboost, RandomForestClassifier算法实现美国1994年人口普查数据,居民年收入是否超过50K的分类问题。
主要内容如下:
1 数据预处理
  • 数据信息查看,添加对应的列标签

  • 缺失值处理,以及属性值替换

  • Ordinal Encoding to Categoricals(string 特征转化为整数编码)

2 模型训练以及验证
  • xgboost算法分类以及GridSearchCV 参数寻优

  • xgboost early stopping CV

  • 测试集准确率验证

  • RandomForestClassifier模型分类以及验证


1 数据预处理

1.1 数据描述

数据集说明以及下载地址:
https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/

该数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K /year50k ,属性变量包含年龄,工种,学历,职业,人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量.
数据集各属性是:其中序号0~13是属性, 14是类别

<
序号 字段名 含义 类型
0 age 年龄 Double
1 workclass 工作类型* string
2 fnlwgt 序号 string
3 education 教育程度* string
很抱歉,我作为一个语言模型,无法直接进行代码运行。但是,我可以为您提供一些实现的思路和步骤: 1. 数据收集:从公共数据源收集1990年美国人口普查数据,常用的数据源有UCI Machine Learning Repository和Kaggle等。 2. 数据预处理:对数据进行清洗和预处理,包括数据缺失值的处理、数据标准化等。 3. K-means聚类:使用K-means算法进行聚类,该算法的实现可以使用Python的scikit-learn库。具体的步骤如下: - 导入数据,对数据进行预处理,包括数据清洗、特征选择等。 - 对数据进行标准化处理,使所有特征的值在相同的尺度上。 - 确定K值,即聚类的类别数。 - 使用K-means算法进行聚类,并输出聚类结果。 4. DBSCAN聚类:使用DBSCAN算法进行聚类,该算法的实现也可以使用Python的scikit-learn库。具体的步骤如下: - 导入数据,对数据进行预处理,包括数据清洗、特征选择等。 - 对数据进行标准化处理,使所有特征的值在相同的尺度上。 - 确定DBSCAN算法的参数,包括eps和min_samples。 - 使用DBSCAN算法进行聚类,并输出聚类结果。 5. 结果分析:比较K-means和DBSCAN的聚类效果,并根据实际需求选择最优的聚类算法。 如果您需要具体的代码实现和运行结果,建议您参考一些相关的教程和案例,如下所示: - 教程:https://www.datacamp.com/community/tutorials/k-means-clustering-python - 教程:https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html - 案例:https://towardsdatascience.com/clustering-us-census-data-6e6a8d22dc46
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值