【组合数学】排列组合 ( 集合组合、一一对应模型分析示例 )



排列组合参考博客 :





一、集合组合、一一对应模型分析示例



2 n 2n 2n 个人分成 n n n 组 , 每组 2 2 2 人 , 有多少种分法 ?


先确定该问题是否是选取问题 , 元素是否重复 , 选取是否有序 ,

  • 不可重复的元素 , 有序的选取 , 对应 集合的排列
  • 不可重复的元素 , 无序的选取 , 对应 集合的组合
  • 可重复的元素 , 有序的选取 , 对应 多重集的排列
  • 可重复的元素 , 无序的选取 , 对应 多重集的组合

2 n 2n 2n 个人 , 人肯定是不重复的 , 分成 n n n 组 , 这里的分组是没有区别的 , 相当于集合的划分 ;

另外还有限制条件 , 每组只能放 2 2 2 个元素 ;

原始的简单模型 , 如 分类 ( 加法 ) , 分步 ( 乘法 ) , 集合排列 , 集合组合 , 多重集排列 , 多重集组合 , 没有对应的模型 , 无法直接使用 ;

不是简单的选取问题 ;



这里需要考虑 组有区别 , 组没有区别 两种情况 ;

分组有区别的话 , 分成 n n n 组 , 先放第 1 1 1 组 , 选 2 2 2 个人 , 再放第 2 2 2 组 , 选 2 2 2 个人 , ⋯ \cdots 这种方案是 可以计算出来的 ;

分组没有区别 , 此时需要观察 分组有区别没有区别 的差别 :

分组没有区别 , 得到一种方法 , 然后对 n n n 个分组进行全排列 , 有 n ! n! n! 种排列方法 , 就得到了分组有区别的方案个数 ;

这里将 分组有区别方案数 与 分组没有区别方案数 建立对应关系 :

分 组 没 有 区 别 方 案 数 × n ! = 分 组 有 区 别 方 案 数 分组没有区别方案数 \times n! = 分组有区别方案数 ×n!=


分组有区别方案数 是可以计算出来的 , 然后 除以 n ! n! n! , 即可得到 分组没有区别的方案数 ;



分组有区别 , 按照 分步处理 的方案 :

① 第 1 1 1 步 : 2 n 2n 2n 个元素中 , 选取 2 2 2 个元素 , C ( 2 n , 2 ) C(2n , 2) C(2n,2) 种方案 ;

② 第 2 2 2 步 : 2 n − 2 2n - 2 2n2 个元素中 , 选取 2 2 2 个元素 , C ( 2 n − 2 , 2 ) C(2n - 2 , 2) C(2n2,2) 种方案 ;

③ 第 3 3 3 步 : 2 n − 4 2n - 4 2n4 个元素中 , 选取 2 2 2 个元素 , C ( 2 n − 4 , 2 ) C(2n - 4 , 2) C(2n4,2) 种方案 ;

⋮ \vdots

④ 第 n n n 步 : 2 n − ( 2 n − 2 ) 2n - ( 2n - 2 ) 2n(2n2) 个元素中 , 选取 2 2 2 个元素 , C ( 2 n − ( 2 n − 2 ) , 2 ) C(2n - ( 2n - 2 ) , 2) C(2n(2n2),2) 种方案 ; 也就是 1 1 1 种方案 ;


排列组合公式

  • 排列 : P ( n , r ) = n ! ( n − r ) ! P(n,r) = \dfrac{n!}{(n-r)!} P(n,r)=(nr)!n!
  • 组合 : C ( n , r ) = P ( n , r ) r ! = n ! r ! ( n − r ) ! C(n, r) = \dfrac{P(n,r)}{r!} = \dfrac{n!}{r!(n-r)!} C(n,r)=r!P(n,r)=r!(nr)!n!

分步处理 需要使用乘法原则 , 将 n n n 步的方案数相乘 :

N = C ( 2 n , 2 ) C ( 2 n − 2 , 2 ) C ( 2 n − 4 , 2 ) ⋯ C ( 2 n − ( 2 n − 2 ) , 2 ) = 2 n ! 2 ! × ( 2 n − 2 ) ! × ( 2 n − 2 ) ! 2 ! × ( 2 n − 4 ) ! ⋯ ( 2 n − ( 2 n − 2 ) ) ! 2 ! × ( 2 n − ( 2 n − 2 ) − 2 ) ! ⏟ n 个 分 步 相 乘 前 后 可 以 约 掉 很 多 阶 乘 = ( 2 n ) ! ( 2 ! ) n \begin{array}{lcl} N &=& C(2n , 2) C(2n - 2 , 2) C(2n - 4 , 2) \cdots C(2n - ( 2n - 2 ) , 2) \\\\ &=& \begin{matrix} \underbrace{ \cfrac{2n!}{2! \times (2n-2)!} \times \cfrac{(2n-2)!}{2! \times (2n-4)!} \cdots \cfrac{(2n - ( 2n - 2 ))!}{2! \times (2n - ( 2n - 2 ) - 2)!} } \\ n 个分步相乘 \end{matrix} 前后可以约掉很多阶乘\\\\ &=& \cfrac{(2n)!}{(2!)^n} \end{array} N===C(2n,2)C(2n2,2)C(2n4,2)C(2n(2n2),2) 2!×(2n2)!2n!×2!×(2n4)!(2n2)!2!×(2n(2n2)2)!(2n(2n2))!n(2!)n(2n)!

分组有区别的方案个数是 ( 2 n ) ! ( 2 ! ) n \cfrac{(2n)!}{(2!)^n} (2!)n(2n)! 个 ;


根据 分 组 没 有 区 别 方 案 数 × n ! = 分 组 有 区 别 方 案 数 分组没有区别方案数 \times n! = 分组有区别方案数 ×n!=

公式 ;

分组有区别方案数 是可以计算出来的 , 然后 除以 n ! n! n! , 即可得到 分组没有区别的方案数 ;

最终结果是 ( 2 n ) ! ( 2 ! ) n n ! \cfrac{(2n)!}{(2!)^n n!} (2!)nn!(2n)!



该问题不是简单的使用 原始的简单模型 , 如 分类 ( 加法 ) , 分步 ( 乘法 ) , 集合排列 , 集合组合 , 多重集排列 , 多重集组合 ;

而是将不可计算的模型 , 对应到一个可计算的模型中 , 然后计算出该模型 的重复度

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值