
数据挖掘
韩曙亮
中国人民大学硕士 , 专注于 移动开发 领域 , 博客专家 , 2023 年博客之星 TOP1 , 2021 年博客之星 TOP9 , 华为云 云享专家 , 阿里云社区 专家博主 , 51CTO 专家博主 ;
展开
-
【数据挖掘】数据挖掘总结 ( 模式挖掘 | Apriori 算法 | 支持度 | 置信度 | 关联规则 ) ★★
一、 支持度 置信度、 二、 频繁项集、 三、 非频繁项集、 四、 Apriori 算法过程、 五、模式挖掘示例、原创 2020-12-29 09:52:53 · 2557 阅读 · 4 评论 -
【数据挖掘】数据挖掘总结 ( 数据挖掘相关概念 ) ★★
一、 数据挖掘特点、二、 数据挖掘组件化思想、三、 朴素贝叶斯 与 贝叶斯信念网络、四、 决策树构造方法、五、 K-Means 算法优缺点、六、 DBSCAN 算法优缺点、七、 支持度 置信度、八、 频繁项集、九、 非频繁项集、十、 Apriori 算法过程原创 2020-12-28 22:05:39 · 2464 阅读 · 0 评论 -
【数据挖掘】数据挖掘总结 ( K-Means 聚类算法 | 二维数据的 K-Means 聚类 ) ★
一、 K-Means 聚类算法流程、二、 二维数据的 K-Means 聚类、1、 第一次迭代、2、 第二次迭代、原创 2020-12-28 10:29:27 · 3456 阅读 · 0 评论 -
【数据挖掘】数据挖掘总结 ( K-Means 聚类算法 | 一维数据的 K-Means 聚类 ) ★
一、 K-Means 聚类算法流程、二、 一维数据的 K-Means 聚类、1、 第一次迭代、2、 第二次迭代、3、 第三次迭代、4、 第四次迭代原创 2020-12-28 09:56:53 · 8093 阅读 · 4 评论 -
【数据挖掘】数据挖掘总结 ( 拉普拉斯修正 | 贝叶斯分类器示例2 ) ★
一、 贝叶斯分类器分类的流程、二、 拉普拉斯修正、三、 贝叶斯分类器示例2、原创 2020-12-27 13:46:04 · 2105 阅读 · 1 评论 -
【数据挖掘】数据挖掘总结 ( 贝叶斯分类器示例 ) ★
一、 贝叶斯分类器分类的流程、二、 贝叶斯分类器分类示例 1原创 2020-12-27 10:23:54 · 1566 阅读 · 1 评论 -
【数据挖掘】数据挖掘总结 ( 贝叶斯分类器 ) ★
一、 贝叶斯分类器、二、 贝叶斯分类器处理多属性数据集方案原创 2020-12-26 19:51:44 · 1419 阅读 · 0 评论 -
【数据挖掘】数据挖掘总结 ( 数据挖掘特点 | 数据挖掘组件化思想 | 决策树模型 ) ★
一、 数据挖掘特点、二、 数据挖掘组件化思想、三、 决策树模型、1、 决策树模型创建、2、 树根属性选择原创 2020-12-26 11:38:17 · 1531 阅读 · 0 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( Apriori 算法过程 | Apriori 算法示例 )
一、 Apriori 算法过程、二、 Apriori 算法示例原创 2020-11-14 14:23:05 · 2483 阅读 · 0 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则性质 | 非频繁项集超集性质 | 频繁项集子集性质 | 项集与超集支持度性质 )
一、 非频繁项集超集性质、二、 频繁项集子集性质、三、 项集与超集支持度性质、原创 2020-11-14 10:14:08 · 3526 阅读 · 0 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( 频繁项集 | 非频繁项集 | 强关联规则 | 弱关联规则 | 发现关联规则 )
一、 频繁项集、二、 非频繁项集、三、 强关联规则、四、 弱关联规则、五、 发现关联规则原创 2020-11-13 21:07:39 · 2762 阅读 · 0 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( 置信度 | 置信度示例 )
一、 置信度、 二、 置信度 示例原创 2020-11-13 21:04:40 · 7016 阅读 · 1 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则 | 数据项支持度 | 关联规则支持度 )
一、 关联规则、二、 数据项支持度、三、 关联规则支持度、原创 2020-11-13 17:39:55 · 1911 阅读 · 0 评论 -
【数据挖掘】关联规则挖掘 Apriori 算法 ( 关联规则简介 | 数据集 与 事物 Transaction 概念 | 项 Item 概念 | 项集 Item Set | 频繁项集 | 示例解析 )
一、 关联规则挖掘简介、二、 数据集 与 事物 ( Transaction ) 概念、三、项 ( Item ) 概念、四、项集 ( Item Set ) 概念、五、频繁项集、六、数据集、事物、项、项集合、项集 示例、原创 2020-11-13 12:52:37 · 2900 阅读 · 3 评论 -
【数据挖掘】基于方格的聚类方法 ( 概念 | STING 方法 | CLIQUE 方法 )
I . 基于方格的聚类方法 简介II . 基于方格的聚类方法 图示III . STING 方法IV . CLIQUE 方法原创 2020-05-07 12:52:36 · 6931 阅读 · 0 评论 -
【数据挖掘】基于层次的聚类方法 ( 聚合层次聚类 | 划分层次聚类 | 族间距离 | 最小距离 | 最大距离 | 中心距离 | 平均距离 | 基于层次聚类步骤 | 族半径 )
基于层次的聚类方法 简介基于层次的聚类方法 概念聚合层次聚类 图示划分层次聚类 图示基于层次的聚类方法 切割点选取族间距离 概念族间距离 使用到的变量族间距离 最小距离族间距离 最大距离族间距离 中心点距离族间距离 平均距离基于层次聚类 ( 聚合层次聚类 ) 步骤基于层次聚类 ( 聚合层次聚类 ) 算法终止条件族半径 计算公式基于层次聚类总结原创 2020-05-07 10:47:25 · 9314 阅读 · 0 评论 -
【数据挖掘】基于密度的聚类方法 - OPTICS 方法 ( 算法流程 | 算法示例 )
OPTICS 算法 两个阶段OPTICS 算法 第一阶段 生成族序待处理队列样本的 核心距离 与 可达距离OPTICS 算法 第二阶段 数据准备OPTICS 算法 第二阶段 工作流程OPTICS 算法 示例 题目OPTICS 算法 示例 人为判断OPTICS 算法 示例 第一次迭代OPTICS 算法 示例 第二次迭代OPTICS 算法 示例 第三次迭代OPTICS 算法 示例 第四次迭代OPTICS 算法 示例 第五次迭代OPTICS 算法 示例 第十六次迭代OPTICS 算法 示原创 2020-05-06 21:45:21 · 4742 阅读 · 8 评论 -
【数据挖掘】基于密度的聚类方法 - OPTICS 方法 ( 核心距离 | 可达距离 | 族序 )
I . 核心距离 概念II . 核心距离值III . 核心距离 示例IV . 可达距离V . 可达距离 示例VI . 可达距离 总结原创 2020-05-05 20:29:01 · 4312 阅读 · 0 评论 -
【数据挖掘】基于密度的聚类方法 - DBSCAN 方法 ( DBSCAN 原理 | DBSCAN 流程 | 可变密度问题 | 链条现象 | OPTICS 算法引入 | 聚类层次 | 族序概念 )
I . DBSCAN 简介II . DBSCAN 算法流程III . DBSCAN 算法 优缺点IV . 可变密度问题V . 链条现象VI . OPTICS 算法原理VII . 聚类分组包含关系VIII . 根据层次进行聚类IX . 族序 ( Cluster Ordering ) 概念原创 2020-05-05 17:59:22 · 1478 阅读 · 0 评论 -
【数据挖掘】基于密度的聚类方法 - DBSCAN 方法 ( K-Means 方法缺陷 | 基于密度聚类原理及概念 | ε-邻域 | 核心对象 | 直接密度可达 | 密度可达 | 密度连接 )
I . K-Means 算法在实际应用中的缺陷II . K-Means 初始中心点选择不恰当III . K-Means 优点 与 弊端IV . 基于密度的聚类方法V . 基于密度的聚类方法 DBSCAN 方法VI . ε-邻域VII . 核心对象VIII . 直接密度可达IX . 密度可达X . 密度连接原创 2020-05-05 12:15:26 · 8247 阅读 · 10 评论 -
【数据挖掘】高斯混合模型 ( 与 K-Means 每个步骤对比 | 初始参数设置 | 计算概率 | 计算平均值参数 | 计算方差参数 | 计算高斯分布概率参数 | 算法终止条件 )
I . 高斯混合模型 ( 样本 -> 模型 )II . 高斯混合模型 ( 模型 -> 样本 )III . 高斯混合模型 与 K-Means 迭代过程对比IV . 高斯混合模型 聚类分析 步骤 ( 1 ) 设置参数值V . 高斯混合模型 聚类分析 步骤 ( 2 ) 计算概率VI . 高斯混合模型 参数分析 : 11 个样本概率 与 kk 个聚类分组VII . 高斯混合模型 参数分析 : nn 个样本概率 与 11 个聚类分组VIII . 高斯混合模型 聚类分析 步骤 ( 3 ) 更新参数 平均值原创 2020-05-04 20:12:20 · 1935 阅读 · 0 评论 -
【数据挖掘】高斯混合模型 ( 高斯混合模型参数 | 高斯混合模型评分函数 | 似然函数 | 生成模型法 | 对数似然函数 | 高斯混合模型方法步骤 )
文章目录I . 高斯混合模型 参数简介II . 高斯混合模型 评分函数III. 似然函数与参数IV . 生成模型法V . 对数似然函数VI . 高斯混合模型方法 步骤I . 高斯混合模型 参数简介1 . 模型 与 参数 : 高斯混合模型 概率密度函数 :p(x)=∑i=1kωig(x∣μi,Σi)p(x) = \sum_{i = 1}^k \omega_i g ( x | \mu_...原创 2020-05-04 17:51:57 · 4751 阅读 · 0 评论 -
【数据挖掘】高斯混合模型 ( 模型简介 | 软聚类 | 概率作用 | 高斯分布 | 概率密度函数 | 高斯混合模型参数 | 概率密度函数 )
I . 高斯混合模型方法 ( GMM )II . 硬聚类 与 软聚类III . GMM 聚类结果概率的作用IV . 高斯混合分布V . 概率密度函数VI . 高斯分布 曲线 ( 仅做参考 )VII . 高斯混合模型 参数简介原创 2020-05-04 14:30:59 · 3189 阅读 · 0 评论 -
【数据挖掘】K-Means 二维数据聚类分析 ( K-Means 迭代总结 | K-Means 初始中心点选择方案 | K-Means 算法优缺点 | K-Means 算法变种 )
K-Means 二维数据 聚类分析 数据样本及聚类要求二维数据曼哈顿距离计算K-Means 算法 步骤第一次迭代 : 步骤 ( 1 ) 中心点初始化第一次迭代 : 步骤 ( 2 ) 计算距离第一次迭代 : 步骤 ( 3 ) 聚类分组第二次迭代 : 步骤 ( 1 ) 中心点初始化第二次迭代 : 步骤 ( 2 ) 计算距离第二次迭代 : 步骤 ( 3 ) 聚类分组K-Means 迭代总结K-Means 初始中心点选择方案K-Means 算法优缺点K-Means 算法变种原创 2020-05-03 18:23:38 · 7376 阅读 · 4 评论 -
【数据挖掘】K-Means 一维数据聚类分析示例
K-Means 一维数据计算示例 数据样本 及 初始值K-Means 一维数据 距离计算方式K-Means 算法 步骤第一次迭代 : 步骤 ( 1 ) 计算距离第一次迭代 : 步骤 ( 2 ) 聚类分组第一次迭代 : 步骤 ( 3 ) 计算中心值第二次迭代 : 步骤 ( 1 ) 计算距离第二次迭代 : 步骤 ( 2 ) 聚类分组第二次迭代 : 步骤 ( 3 ) 计算中心值第三次迭代 : 步骤 ( 1 ) 计算距离第三次迭代 : 步骤 ( 2 ) 聚类分组第三次迭代 : 步骤 ( 3 )原创 2020-05-03 15:23:59 · 15781 阅读 · 5 评论 -
【数据挖掘】基于划分的聚类方法 ( K-Means 算法简介 | K-Means 算法步骤 | K-Means 图示 )
I . 基于划分的聚类方法II . K-Means 算法 简介III . K-Means 算法 步骤IV . K-Means 方法的评分函数V . K-Means 算法 图示原创 2020-05-03 14:33:35 · 11686 阅读 · 0 评论 -
【数据挖掘】聚类算法 简介 ( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 )
I . 聚类主要算法II . 基于划分的聚类方法III . 基于层次的聚类方法IV . 聚合层次聚类 图示V . 划分层次聚类 图示VI . 基于层次的聚类方法 切割点选取VII . 基于密度的方法VIII . 基于方格的方法IX . 基于模型的方法原创 2020-05-02 22:42:14 · 5725 阅读 · 1 评论 -
【数据挖掘】聚类 Cluster 矩阵转换 数据矩阵 -> 相似度矩阵 ( 二元变量简介 | 二元变量可能性表 | 对称二元变量 | 简单匹配系数 | 非对称二元变量 | Jaccard 系数 )
I . 二元变量II . 二元变量 可能性表III . 对称 二元变量 ( 恒定相似度 )IV . 简单匹配系数 ( 恒定相似度计算 )V . 不对称 二元变量 ( 非恒定相似度 )VI . Jaccard 系数 ( 非恒定相似度计算 )VII . 二元变量 相似度 计算实例原创 2020-05-02 17:19:04 · 4650 阅读 · 3 评论 -
【数据挖掘】聚类 Cluster 矩阵转换 数据矩阵 -> 相似度矩阵 ( 聚类数据类型 | 区间标度型变量及标准化 | 相似度计算 | 明科斯基距离 | 曼哈顿距离 | 欧几里得距离 )
I . 聚类数据类型II . 区间标度型变量III . 区间标度型变量 标准化IV . 区间标度型变量 标准化 ( 1 ) 计算所有数据的平均值V . 区间标度型变量 标准化 ( 2 ) 计算平均绝对偏差VI . 区间标度型变量 标准化 ( 3 ) 计算标准化度量值VII . 区间标度型变量 标准化 ( 4 ) 属性标准化示例VIII . 相似度计算 ( 1 ) 明科斯基距离IX . 相似度计算 ( 2 ) 曼哈顿距离X . 相似度计算 ( 3 ) 欧几里得距离原创 2020-05-02 12:40:59 · 2600 阅读 · 0 评论 -
【数据挖掘】聚类 Cluster 简介 ( 概念 | 应用场景 | 质量 | 相似度 | 算法要求 | 数据矩阵 | 相似度矩阵 | 二模矩阵 | 单模矩阵 )
I . 聚类 ( Cluster ) 概念II . 聚类 ( Cluster ) 应用场景III . 聚类 ( Cluster ) 质量IV . 聚类 ( Cluster ) 质量 测量V . 聚类 ( Cluster ) 算法要求VI . 聚类 ( Cluster ) 数据矩阵VII . 聚类 ( Cluster ) 相似度矩阵VIII . 聚类 ( Cluster ) 二模矩阵 与 单模矩阵原创 2020-05-02 08:47:46 · 6585 阅读 · 0 评论 -
【数据挖掘】K-NN 分类 ( 简介 | 分类概念 | K-NN 分类实例 | K-NN 分类准确度评估 | K-NN 分类结果评价指标 | 准确率 | 召回率 )
I . K-NN 简介II . K-NN 分类III . K-NN 分类实例IV . K-NN 分类 准确性评估方法V . 保持法VI . kk-交叉确认法VII . K-NN 分类结果评价指标VIII . 分类 判定 二维表IX . 准确率X . 召回率XI . 准确率与召回率关联XII . 准确率 与 召回率 综合考虑原创 2020-04-30 12:10:18 · 2820 阅读 · 0 评论 -
【数据挖掘】卷积神经网络 ( 池化 | 丢弃 | 批量规范化 | 卷积神经网络完整流程示例 | 卷积 | 池化 | 全连接 | 输出 | 卷积神经网络总结 )
I . 池化II . 丢弃操作III . 批量规范化IV . 卷积神经网络 完整流程示例 ( 1 ) : 原始输入图V . 卷积神经网络 完整流程示例 ( 2 ) : 卷积层 C_1C VI . 卷积神经网络 完整流程示例 ( 3 ) : 池化层 S_2S VII . 卷积神经网络 完整流程示例 ( 4 ) : 卷积层 C_3C VIII . 卷积神经网络 完整流程示例 ( 5 ) : 卷积层 C_3C 特征组合示例IX . 卷积神经网络 完整流程示例 ( 6 ) : 池化层 S_4S原创 2020-04-29 22:18:57 · 1454 阅读 · 1 评论 -
【数据挖掘】卷积神经网络 ( 视觉原理 | CNN 模仿视觉 | 卷积神经网络简介 | 卷积神经网络组成 | 整体工作流程 | 卷积计算图示 | 卷积计算简介 | 卷积计算示例 | 卷积计算参数 )
I . 人类的视觉原理II . 卷积神经网络 模仿 视觉原理III . 卷积神经网络简介IV . 卷积神经网络 组成V . 卷积神经网络 工作流程VI . 降低样本参数数量级VII . 卷积计算 图示分析VIII . 卷积计算 简介IX . 卷积计算 示例X . 卷积本质XI . 卷积 计算 参数原创 2020-04-28 21:53:14 · 2087 阅读 · 0 评论 -
【数据挖掘】神经网络 后向传播算法 ( 梯度下降过程 | 梯度方向说明 | 梯度下降原理 | 损失函数 | 损失函数求导 | 批量梯度下降法 | 随机梯度下降法 | 小批量梯度下降法 )
I . 梯度下降 Gradient Descent 简介 ( 梯度下降过程 | 梯度下降方向 )II . 梯度下降 示例说明 ( 单个参数 )III . 梯度下降 示例说明 ( 多个参数 )IV . 梯度下降 总结 ( 定义损失函数 | 损失函数求导 )V . 梯度下降 方法VI . 批量梯度下降法VII . 随机梯度下降法VIII . 小批量梯度下降法原创 2020-04-28 08:09:56 · 1961 阅读 · 0 评论 -
【数据挖掘】神经网络 后向传播算法( 向后传播误差 | 输出层误差公式 | 隐藏层误差公式 | 单元连接权值更新公式 | 单元偏置更新公式 | 反向传播 | 损失函数 | 误差平方和 | 交叉熵 )
I . 向后传播误差 简介II . 输出层误差计算公式III . 隐藏层层误差计算公式IV . 使用误差更新 连接权值V . 使用误差更新 单元偏置VI . 反向传播 过程VII . 损失函数 简介VIII . 损失函数IX . 损失函数 举例X . 损失函数 优化过程原创 2020-04-27 08:21:04 · 5949 阅读 · 1 评论 -
【数据挖掘】神经网络 后向传播算法 ( 线性回归与逻辑回归 | 单个神经元本质及逻辑 | 神经网络每一层分析 | 神经网络矩阵形式 | 线性变换与非线性变换 )
I . 线性回归 与 逻辑回归II . sigmod 非线性激活函数III . 神经元单元 逻辑IV . 单个 神经元单元 总结V . 神经网络 每一层分析VI . 神经网络 矩阵形式原创 2020-04-25 17:02:01 · 1103 阅读 · 0 评论 -
【数据挖掘】神经网络 后向传播算法 向前传播输入 案例计算分析 ( 网络拓扑 | 输入层计算 | 隐藏层计算 | 输出层计算 )
I . 神经网络 后向传播算法 计算 隐藏层 与 输出层 的输入输出实例分析II . 神经网络 后向传播算法 输入层公式III. 神经网络 后向传播算法 输入层计算IV . 神经网络 后向传播算法 隐藏层 / 输出层 输入公式V . 神经网络 后向传播算法 隐藏层 / 输出层 输出公式VI . 神经网络 后向传播算法 计算单元 4 输入值 ( 隐藏层 )VII . 神经网络 后向传播算法 计算单元 5 输入值 ( 隐藏层 )VIII . 神经网络 后向传播算法 计算单元 4 输出值 ( 隐藏层原创 2020-04-24 23:00:07 · 2110 阅读 · 0 评论 -
【数据挖掘】神经网络 后向传播算法 ( 神经网络分类 | 适用场景 | 优缺点 | 多路前馈神经网络 | 后向传播算法步骤 | 初始化权 | 向前传播输入 )
I . 基于 神经网络 进行分类II . 神经网络分类适用场景III . 神经网络分类的弊端IV . 神经网络分类的优点V . 后向传播算法VI . 后向传播算法 网络拓扑定义VII . 后向传播算法 学习过程VIII . 后向传播算法 步骤IX . 后向传播算法 初始化权X . 后向传播算法 步骤 二 : 向前传播输入 第一层输入值XI . 后向传播算法 步骤 二 : 向前传播输入 隐藏层 与 输出层 输入值计算XII . 后向传播算法 步骤 二 : 向前传播输入 隐藏层 与 输出层原创 2020-04-23 12:29:34 · 1958 阅读 · 0 评论 -
【数据挖掘】神经网络简介 ( 有向图本质 | 拓扑结构 | 连接方式 | 学习规则 | 分类 | 深度学习 | 机器学习 )
I . 神经网络 ( Neural Networks ) 简介II . 神经网络三要素III . 神经网络拓扑结构IV . 神经网络连接方式V . 神经网络学习规则VI . 浅层神经网络 与 深度神经网络VII . 深度学习 简介VIII . 机器学习 简介IX . 深度学习 与 机器学习 建模对比X . 深度学习 与 机器学习 性能对比原创 2020-04-22 21:10:08 · 4081 阅读 · 0 评论 -
【数据挖掘】贝叶斯信念网络 ( 马尔科夫假设 | 结构 | 有向无环图 | 参数 | 条件概率表 | 案例分析 )
I . 贝叶斯信念网络II . 马尔科夫假设III . 贝叶斯信念网络 示例 1IV . 贝叶斯信念网络 示例 2V . 贝叶斯信念网络 联合概率分布计算VI . 贝叶斯信念网络 联合概率分布计算 2VII . 贝叶斯信念网络 训练过程原创 2020-04-21 13:43:52 · 2944 阅读 · 0 评论