整除问题【上海交大复试机试题】【素数筛选法】

先要读懂题意:

n!%(a^k)==0,n!%(a^(k+1))!=0,输出k

一个非素数总能表示成若干个素数的乘积,所以这道题可以转化成:

  1. 将n!分解成若干个质因数{(x1,n1),(x2,n2),……}   (其中(x1,n1)表示n!的质因子中有n1个x1)
  2. 将a分解成若干个质因数{(x1,a1),(x2,a2),……} ,(其中(x1,a1)表示a的质因子中有a1个x1)
  3. 将n1和a1对应相减,k++,如果减完以后,原来不=0的ni成了0,此时就说明可以停止了,(因为每一个a分解成的质因子都是相同的,这次成了0,说明n!%(a^k)==0,如果再除一次,n!%(a^k)就<0了);如果不是0,重复3
#include<iostream>
#include<vector>
#include<map>
using namespace std;
bool isprime[1005];
map<int,int> prime_count_n,prime_count_a;
void init(int n){
	for(int i=0;i<=n;i++){
		isprime[i]=true;
	}
	isprime[0]=false;
	isprime[1]=false;
	for(int i=2;i<=n;i++){
		if(isprime[i]==false){
			continue;
		}
		prime_count_n.insert(pair<int,int> (i,0));
		for(int j=i*i;j<=n;j+=i){
			isprime[j]=false;
		}
	}
}
int main(){
	int n,a;
	cin>>n>>a;
	init(n);
	for(int i=2;i<=n;i++){
		int temp=i;
		for(map<int,int>::iterator it=prime_count_n.begin();it!=prime_count_n.end();it++){
			while(temp%it->first==0 && n){
				it->second++;
				temp/=it->first;
			}
			if(temp==1){
				break;
			}
		}
	}
//	for(map<int,int>::iterator it=prime_count_n.begin();it!=prime_count_n.end();it++){
//			cout<<it->first<<" "<<it->second<<endl;
//		}
	int flag=1,k=0;   //标志以下while循环是否结束 
	while(flag){
		
		int temp=a;
		for(map<int,int>::iterator it=prime_count_n.begin();it!=prime_count_n.end();it++){
			while(temp%it->first==0){
				temp/=it->first;
				it->second--;
				if(it->second==0){
					flag=0;
					break;
					
				}
			}
			if(temp==1){
				k++;
				break;
			}	
		}
		
	}
	cout<<k<<endl;
//	cout<<count<<endl;
	return 0;
} 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值