题目描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 比如,如下4 * 4的矩阵 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 的最大子矩阵是 9 2 -4 1 -1 8 这个子矩阵的大小是15。
输入描述:
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。 再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。 已知矩阵中整数的范围都在[-127, 127]。
输出描述:
测试数据可能有多组,对于每组测试数据,输出最大子矩阵的大小。
示例1
输入
复制
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
输出
复制
15
输入
复制
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
输出
复制
15
arr=
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
total数组的计算
total[i][j]表示从0行到i行,第j列的累加和,例如
total[1][0]=0+9=9
total[1][1]=-2+2=0
total[1][2]=-7-6=-13……
total=
0 -2 -7 0
9 0 -13 2
5 1 -17 3
4 9 -17 1
计算
0-0、0-1、0-2、……0-n
1-1、1-2、……1-n
2-2、……2-n
……
n-n
行
1-n列的最大连续子序列
个人感觉,这种做法更倾向于把所有结果都算了一遍然后对这个暴力法的一条比较简洁的思路,列举出来各行的叠加和,这会是一个1*n的一维数组arr,再对这个一维数组求最大连续子序列
#include<iostream>
using namespace std;
const int MAXN=100;
int matrix[MAXN][MAXN]; //原始矩阵
int total[MAXN][MAXN]; //total[i][k]表示原始矩阵0-i行,第k列的和
int arr[MAXN]; //一维数组
int dp[MAXN]; //一维数组的dp
int MaxSubSequence(int n){
int maxmum=INT_MIN;
dp[0]=arr[0];
for(int i=1;i<n;i++){
dp[i]=max(arr[i],arr[i]+dp[i-1]);
maxmum=max(dp[i],maxmum);
}
return maxmum;
}
int MaxMatrix(int n){
int maxmum=INT_MIN;
for(int i=0;i<n;i++){
for(int j=i;j<n;j++){ //i行到j行
for(int k=0;k<n;k++){ //k列
if(j==0){
arr[k]=total[j][k];
}
else{
arr[k]=total[j][k]-total[i-1][k];
}
}
maxmum=max(maxmum,MaxSubSequence(n));
}
}
return maxmum;
}
int main(){
int n;
scanf("%d",&n);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
scanf("%d",&matrix[i][j]);
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(i==0){ //0行及以上的和
total[i][j]=matrix[i][j];
}
else{ //0行到i行第j列的和
total[i][j]=total[i-1][j]+matrix[i][j];
}
}
}
printf("%d\n",MaxMatrix(n));
}