11、盛最多水的容器

1、暴力法(超时)

class Solution {
public:
    int maxArea(vector<int>& height) {
        int maxx=0;
        for(int i=0;i<height.size()-1;i++){
            for(int j=i+1;j<height.size();j++){
                int hei=min(height[i],height[j]);
                int temp=hei*(j-i);
                if(temp>maxx){
                    maxx=temp;
                }
            }
        }
        return maxx;
    }
};

2、双指针法

class Solution {
public:
    int maxArea(vector<int>& height) {
        int i=0,j=height.size()-1,maxx=0;
        while(i<j){
            maxx=max(min(height[i],height[j])*(j-i),maxx);
            if(height[i]<height[j]){
                i++;
            }
            else{
                j--;
            }
        }
        return maxx;
    }
};

 

 

题目中的"最多水容器"实际上是一个著名的问题,也被称为"水最多的容器"问题。该问题可以用贪心算法来解决。 首先,我们定义一个指针对数组进行遍历。初始时,左指针指向数组的第一个元素,右指针指向数组的最后一个元素。我们计算当前指针所指向的两个元素构成的容器的面积。容器的面积是由两个因素决定的,即两个指针之间的距离和指针所指向的较小的元素的高度。我们将这个面积记录下来,并与之前的最大面积进行比较,保留最大的面积值。 接下来,我们要决定移动哪个指针。我们移动指针的原则是,每次移动指向较小元素的指针,这样才有可能找到更高的柱子,进而获得更大的面积。假设当前左指针指向的元素较小,那么我们将左指针向右移动一位。否则,如果右指针指向的元素较小,我们将右指针向左移动一位。 重复上述的过程,直到两个指针相遇为止。最后得到的最大面积即为所求。 下面是用Python编写的解法代码: def maxArea(height): left = 0 right = len(height) - 1 maxArea = 0 while left < right: area = min(height[left], height[right]) * (right - left) maxArea = max(maxArea, area) if height[left] < height[right]: left += 1 else: right -= 1 return maxArea 这段代码的时间复杂度是O(n),其中n是数组的长度。因为我们只对整个数组进行了一次遍历。因此,该解法是一个高效解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值