JUC
七、线程安全集合类概述
线程安全集合类可以分为三大类:
-
遗留的线程安全集合如
Hashtable
,Vector
(直接用synchronized修饰方法,效率低) -
使用 Collections 装饰的线程安全集合(装饰器模式,使用synchronized修饰方法),如:
Collections.synchronizedCollection
Collections.synchronizedList
Collections.synchronizedMap
Collections.synchronizedSet
Collections.synchronizedNavigableMap
Collections.synchronizedNavigableSet
Collections.synchronizedSortedMap
Collections.synchronizedSortedSet
-
java.util.concurrent.*
重点介绍 java.util.concurrent.*
下的线程安全集合类,可以发现它们有规律,里面包含三类关键词: Blocking、CopyOnWrite、Concurrent
- Blocking 大部分实现基于锁,并提供用来阻塞的方法
- CopyOnWrite 之类容器修改开销相对较重 (保护性拷贝)
- Concurrent 类型的容器
- 内部很多操作使用 cas 优化,一般可以提供较高吞吐量
- 弱一致性
- 遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍 历,这时内容是旧的
- 求大小弱一致性,size 操作未必是 100% 准确
- 读取弱一致性
对于非安全容器来讲,遍历时如果发生了修改,使用 fail-fast 机制也就是让遍历立刻失败,抛出 ConcurrentModificationException,不再继续遍历
八、ConcurrentHashMap
1、基本使用(字符统计)
生成 10个字符串,每个字符串中含有1000个26个字母,,也就是整个字符数组中每个字符有10000个。
public static String[] createStrs(){
String[] strs = new String[10];
for (int i = 0; i < 10; i++) {
StringBuilder builder = new StringBuilder();
for (int j = 0; j < 1000; j++) {
builder.append("abcedfghijklmnopqrstuvwxyz");
}
strs[i] = builder.toString();
}
return strs;
}
接着使用map对字符数组中每个字符的个数进行统计。具体方法是使用10线程,每个线程对字符数组中的一个字符串使用map进行统计。其中CountDownLatch的作用是,等到10个统计线程都结束之后在输出。代码如下:
public static void main(String[] args) throws InterruptedException {
String[] strs = createStrs();
//对strs中每个字符的个数进行统计
HashMap<Character, Integer> map = new HashMap<>();
//CountDownLatch让主线等待其他10线程执行完毕之后在输出
CountDownLatch latch = new CountDownLatch(10);
//创建strs.length个线程
for (int i = 0; i < strs.length; i++) {
int finalI = i;
//每个线程对strs中的一个字符串进行字符个数统计
new Thread(()->{
char[] chars = strs[finalI].toCharArray();
//遍历字符串进行统计
for (char ch : chars) {
//会出现线程不安全的地方
Integer value = map.get(ch);
Integer counter = (value == null) ? 1 : value + 1;
map.put(ch, counter);
}
latch.countDown();
}).start();
}
latch.await();
System.out.println(map);
}
结果如下所示,可以看出字符个数统计的结果是不正确的。这是因为在上面的代码中的20~23行,虽然每个线程统计的是不同的字符串,但是每个字符串中的字符是重复的。
也就是map的key是重复的,这就可能导致可能线程A调用了map.get
,还没来得及调用map.put
,线程B也对同一个字符调用了map.get
和map.put
,之后线程A调用map.put
时就会把线程B修改的结果覆盖掉。
{a=9800, b=9747, c=9804, d=9817, e=9754, f=9764, g=9800, h=9753, i=9799, j=9780, k=9748, l=9778, m=9797, n=9764, o=9293, p=9764, q=9801, r=9760, s=9795, t=9779, u=9797, v=9304, w=9807, x=9763, y=9794, z=9763}
线程我们把HashMap换成ConcurrentHashMap看看还会不会出现这样的问题:
ConcurrentHashMap<Character, Integer> map = new ConcurrentHashMap<>();
//HashMap<Character, Integer> map = new HashMap<>();
结果如下,我们发现结果仍然是不正确的。不是说ConcurrentHashMap是线程安全的吗?这是为什么呢?
其实原因之前介绍过,ConcurrentHashMap的线程安全只能保证它的每个方法是线程安全的,多个方法的组合并不能保证是线程安全的。
{a=9099, b=9408, c=9466, d=9468, e=9464, f=9455, g=9488, h=9417, i=9341, j=9435, k=9397, l=9418, m=9479, n=9440, o=9240, p=9330, q=9442, r=9416, s=9459, t=9412, u=9468, v=9428, w=9371, x=9409, y=9456, z=9411}
那么应该怎么实现呢?当然可以使用synchronized将代码20~23行包裹起来实现阻塞,如下面的代码所示。
//会出现线程不安全的地方
synchronized (map) {
Integer value = map.get(ch);
Integer counter = (value == null) ? 1 : value + 1;
map.put(ch, counter);
}
结果也是没有问题的,但是这样会使得效率过低。下面我们来介绍一下ConcurrentHashMap应该怎么使用:
{a=10000, b=10000, c=10000, d=10000, e=10000, f=10000, g=10000, h=10000, i=10000, j=10000, k=10000, l=10000, m=10000, n=10000, o=10000, p=10000, q=10000, r=10000, s=10000, t=10000, u=10000, v=10000, w=10000, x=10000, y=10000, z=10000}
我可以使用ConcurrentHashMap配合原子自增类LongAdder使用,具体实现方法就是将map中value的类型换为线程安全的LongAdder,然后使用computeIfAbsent,该方法参数是key和如果key不存在时要做的操作(在这里是创建一个原子自增对象LongAdder)。返回值是新生成的value,也就是LongAdder对象,接着我们就可以使LongAdder进行自增操作。
public static void main(String[] args) throws InterruptedException {
String[] strs = createStrs();
//对strs中每个字符的个数进行统计
ConcurrentHashMap<Character, LongAdder> map = new ConcurrentHashMap<>();
//CountDownLatch让主线等待其他10线程执行完毕之后在输出
CountDownLatch latch = new CountDownLatch(10);
//创建strs.length个线程
for (int i = 0; i < strs.length; i++) {
int finalI = i;
//每个线程对strs中的一个字符串进行字符个数统计
new Thread(()->{
char[] chars = strs[finalI].toCharArray();
//遍历字符串进行统计
for (char ch : chars) {
LongAdder longAdder = map.computeIfAbsent(ch, (key) -> new LongAdder());
longAdder.increment();
}
latch.countDown();
}).start();
}
latch.await();
System.out.println(map);
}
可以看出结果是没有问题的,原因是map.computeIfAbsent
和longAdder.increment
这两个方法都使用CAS操作保证了线程安全的。
{a=10000, b=10000, c=10000, d=10000, e=10000, f=10000, g=10000, h=10000, i=10000, j=10000, k=10000, l=10000, m=10000, n=10000, o=10000, p=10000, q=10000, r=10000, s=10000, t=10000, u=10000, v=10000, w=10000, x=10000, y=10000, z=10000}
2、 JDK 7 HashMap 并发死链
总结
- 究其原因,是因为在多线程环境下使用了非线程安全的 map 集合
- JDK 8 虽然将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),但仍不意味着能 够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)
3、 JDK 8 ConcurrentHashMap 原理
1)重要属性和内部类
// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}
2)重要方法
// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
3)构造器分析
可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//如果initialCapacity小于concurrencyLevel(并发度)
//则将其改为concurrencyLevel
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
//之后还要在经过下面的公式计算
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
//最后要取大于size的最小的2^n
// tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ...
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
4)get 流程
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// spread 方法能确保返回结果是正数
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
//根据hash码找到头节点,(n - 1) & h相当于取模运算
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果头结点已经是要查找的 key
if ((eh = e.hash) == h) {
//判断头节点的key是否等于传进来的key,或者equals
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 正常遍历链表, 遍历链表查找key对应的value
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
5)put 流程
以下数组简称(table),链表简称(bin)
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key和value都不允许为空
if (key == null || value == null) throw new NullPointerException();
// 其中 spread 方法会综合高位低位, 具有更好的 hash 性
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
// f 是链表头节点
// fh 是链表头结点的 hash
// i 是链表在 table 中的下标
Node<K,V> f; int n, i, fh;
// 需要创建 table
if (tab == null || (n = tab.length) == 0)
// 初始化 table 使用了 cas, 无需 synchronized
//无论是否创建成功, 进入下一轮循环
tab = initTable();
// 当前桶为空,则创建链表头节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 添加链表头使用了 cas, 无需 synchronized
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果检测到该桶正在扩容,则帮忙扩容
else if ((fh = f.hash) == MOVED)
// 帮忙之后, 进入下一轮循环
tab = helpTransfer(tab, f);
//没有在扩容或者转换红黑树,而且发生桶下标冲突
else {
V oldVal = null;
// 只锁住链表头节点
synchronized (f) {
// 再次确认链表头节点没有被移动
if (tabAt(tab, i) == f) {
// 链表
//fh(头节点hash码)大于0说明是普通连接
//如果是红黑树或者正在扩容fh<0
if (fh >= 0) {
binCount = 1;
// 遍历链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 找到相同的 key ,则更新value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
// 更新
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 已经是后的节点了, 新增 Node, 追加至链表尾
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
// putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
// 释放链表头节点的锁
}
//binCount为该桶下链表的长度
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
// 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
//链表转为红黑树要求数组长度64之后才会进行,之前都只会扩容
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 增加 size 计数 ,采用了多个累加单元的形式
addCount(1L, binCount);
return null;
}
//创建hash表,懒惰触发
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// 使用CAS尝试将 sizeCtl 设置为 -1(表示初始化 table)
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 相当于获得锁, 可以继续创建 table,
//这时其它线程会在 while() 循环中 yield 直至 table 创建完成
try {
if ((tab = table) == null || tab.length == 0) {
//如果传入的有值则使用该值,否则使用默认16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
//new一个Node数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//让sizeCtl为下一次扩容的阈值
//下面的公式等于sc = n * (3 / 4)
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
// put最后调用,增加元素个数的计数
// check 是之前 binCount 的个数
// 和LongAdder思想类似,设置多个累加单元,多线程下更高效
//另外如果超过阈值会进行帮助扩容操作
private final void addCount(long x, int check) {
//as:累加单元数组
CounterCell[] as; long b, s;
if (
// 已经有了 counterCells, 向 cell 累加
(as = counterCells) != null ||
// 还没有, 向 baseCount 累加
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (// 还没有 counterCells 数组
as == null || (m = as.length - 1) < 0 ||
// 还没有 cell (
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
// cell cas 增加计数失败
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// 创建累加单元数组和cell, 累加重试
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 获取元素个数
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// newtable 已经创建了,帮忙扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 需要扩容,这时 newtable 未创建
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
6)size 计算流程
size 计算实际发生在 put,remove 改变集合元素的操作之中
- 没有竞争发生,向 baseCount 累加计数
- 有竞争发生,新建 counterCells,向其中的一个 cell 累加计数
- counterCells 初始有两个 cell
- 如果计数竞争比较激烈,会创建新的 cell 来累加计数
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n);
}
final long sumCount() {
CounterCell[] as = counterCells;
CounterCell a;
// 将 baseCount 计数与所有 cell 计数累加
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null) sum += a.value;
}
}
return sum;
}
7)transfer扩容流程
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//创建新的数组
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
//新数组的大小为原来的2倍(n << 1)
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 搬迁完毕尝试设置状态
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//检测到已经搬迁完毕,继续执行下一个桶
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
//链表搬迁逻辑
if (fh >= 0) {
//...
}
//红黑树搬迁逻辑
else if (f instanceof TreeBin) {
//....
}
}
}
}
}
}
8)总结★
Java 8 数组(Node) +( 链表 Node | 红黑树 TreeNode ) 以下数组简称(table),链表简称(bin)
- 初始化:使用 cas 来保证并发安全,懒惰初始化 table
- 转换红黑树:当table.length<64时,先尝试扩容,当超过64时,并且bin.length>8时,会将链表红黑树化(与JDK 7的不同),树化过程会用 synchronized 锁住链表头
- put:如果该bin尚未创建,只需要使用CAS创建bin;如果已经有了,锁住链表头,进行后续put操作,元素添加到bin尾部(与JDK 7的不同)
- get:无锁操作仅需保证可见性,扩容过程中get操作拿到的是ForwardingNode ,它会让get操作去新的table进行
- 扩容:扩容以bin为单位进行,需要对 bin 进行 synchronized。这时其他线程并不是无事可做,而是帮助其他bin进行进行扩容(转移bin中的Node),扩容时平均只有 1/6 的节点会把复制到新 table 中
- size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中。后统计数量时累加 即可(思路类似LongAdder)
4、 JDK 7 ConcurrentHashMap
它维护了一个 segment 数组,每个 segment 对应一把锁
- 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的
- 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化
可以看到 1.7的ConcurrentHashMap 没有实现懒惰初始化,空间占用不友好
其中 this.segmentShift 和 this.segmentMask 的作用是决定将 key 的 hash 结果匹配到哪个 segment 例如,根据某一 hash 值求 segment 位置,先将高位向低位移动 this.segmentShift 位
九、LinkedBlockingQueue 原理
1、基本的入队出队
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
static class Node<E> {
E item;
/**
* next的值有下列三种情况之一
* - 真正的后继节点
* - 自己, 发生在出队时
* - null, 表示是没有后继节点, 是后了
*/
Node<E> next;
Node(E x) { item = x; }
}
}
入队(enqueue)
初始化链表 last = head = new Node<E>(null);
Dummy 节点用来占位,item 为 null
当一个节点入队 last = last.next = node;
再来一个节点入队 last = last.next = node;
出队(dequeue,从头结点出)
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
h = head
first = h.next
h.next = h
head = first
E x = first.item;
first.item = null;
return x;
2、加锁分析
高效之处在于:用了两把锁和 dummy 节点
- 用一把锁,同一时刻,多只允许有一个线程(生产者或消费者,二选一)执行
- 用两把锁,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
- 消费者与消费者线程仍然串行
- 生产者与生产者线程仍然串行
- 消费者与生产者线程可以并行
线程安全分析
- 当节点总数大于 2 时(包括 dummy 节点),putLock 保证的是 last 节点的线程安全,takeLock 保证的是 head 节点的线程安全。两把锁保证了入队和出队没有竞争
- 当节点总数等于 2 时(即一个 dummy 节点,一个正常节点)这时候,仍然是两把锁锁两个对象,不会竞争
- 当节点总数等于 1 时(就一个 dummy 节点)这时 take 线程会被 notEmpty 条件阻塞,有竞争,会阻塞
// 用于 put(阻塞) offer(非阻塞)
private final ReentrantLock putLock = new ReentrantLock();
// 用户 take(阻塞) poll(非阻塞)
private final ReentrantLock takeLock = new ReentrantLock();
3、put 操作
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
// count 用来维护元素计数
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 满了等待
while (count.get() == capacity) {
// 倒过来读就好: 等待 notFull
notFull.await();
}
// 有空位, 入队且计数加一
enqueue(node);
c = count.getAndIncrement();
// 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
// 如果队列中有一个元素, 叫醒 take 线程
if (c == 0)
// 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
signalNotEmpty();
}
4、take 操作
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
// 如果队列中只有一个空位时, 叫醒 put 线程
// 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity
if (c == capacity)
// 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
signalNotFull();
return x;
}
5、性能比较
LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较
- Linked 支持有界,Array 强制有界
- Linked 实现是链表,Array 实现是数组
- Linked 是懒惰的,而 Array 需要提前初始化 Node 数组
- Linked 每次入队会生成新 Node,而 Array 的 Node 是提前创建好的
- Linked 两把锁,Array 一把锁
十、ConcurrentLinkedQueue
ConcurrentLinkedQueue 的设计与 LinkedBlockingQueue 非常像,也是
- 两把【锁】,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
- dummy 节点的引入让两把【锁】将来锁住的是不同对象,避免竞争
- 只是这【锁】使用了 cas 来实现
事实上,ConcurrentLinkedQueue 应用还是非常广泛的
例如之前讲的 Tomcat 的 Connector 结构时,Acceptor 作为生产者向 Poller 消费者传递事件信息时,正是采用了 ConcurrentLinkedQueue 将 SocketChannel 给 Poller 使用
十一、CopyOnWriteArrayList
CopyOnWriteArraySet
是它的马甲 底层实现采用了 写入时拷贝
的思想,增删改操作会将底层数组拷贝一份,更 改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。 以新增为例:
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 获取旧的数组
Object[] elements = getArray();
int len = elements.length;
// 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
Object[] newElements = Arrays.copyOf(elements, len + 1);
// 添加新元素
newElements[len] = e;
// 替换旧的数组
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
其它读操作并未加锁,例如:
public void forEach(Consumer<? super E> action) {
if (action == null) throw new NullPointerException();
Object[] elements = getArray();
int len = elements.length;
for (int i = 0; i < len; ++i) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
action.accept(e);
}
}
适合**『读多写少』**的应用场景
get 弱一致性
迭代器弱一致性
CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
list.remove(0);
System.out.println(list);
}).start();
sleep1s();
//会出现弱一致性
while (iter.hasNext()) {
System.out.println(iter.next());
}
不要觉得弱一致性就不好
- 数据库的 MVCC 都是弱一致性的表现
ck.unlock();
}
}
其它读操作并未加锁,例如:
```java
public void forEach(Consumer<? super E> action) {
if (action == null) throw new NullPointerException();
Object[] elements = getArray();
int len = elements.length;
for (int i = 0; i < len; ++i) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
action.accept(e);
}
}
适合**『读多写少』**的应用场景
get 弱一致性
[外链图片转存中…(img-aGjmhz87-1591368809267)]
迭代器弱一致性
CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
list.remove(0);
System.out.println(list);
}).start();
sleep1s();
//会出现弱一致性
while (iter.hasNext()) {
System.out.println(iter.next());
}
不要觉得弱一致性就不好
- 数据库的 MVCC 都是弱一致性的表现
- 并发高和一致性是矛盾的,需要权衡