Java并发学习笔记(十):线程安全集合类、ConcurrentHashMap原理、LinkedBlockingQueue 原理、CopyOnWriteArrayList

本文深入探讨线程安全集合类的三大类别,包括遗留的线程安全集合、使用Collections装饰的线程安全集合,以及java.util.concurrent包下的线程安全集合。特别聚焦于ConcurrentHashMap的原理与使用技巧,LinkedBlockingQueue的高效并发策略,以及CopyOnWriteArrayList的写入时拷贝机制。
摘要由CSDN通过智能技术生成

JUC

七、线程安全集合类概述

在这里插入图片描述

线程安全集合类可以分为三大类:

  • 遗留的线程安全集合如 HashtableVector(直接用synchronized修饰方法,效率低)

  • 使用 Collections 装饰的线程安全集合(装饰器模式,使用synchronized修饰方法),如:

    • Collections.synchronizedCollection
    • Collections.synchronizedList
    • Collections.synchronizedMap
    • Collections.synchronizedSet
    • Collections.synchronizedNavigableMap
    • Collections.synchronizedNavigableSet
    • Collections.synchronizedSortedMap
    • Collections.synchronizedSortedSet
  • java.util.concurrent.*

重点介绍 java.util.concurrent.* 下的线程安全集合类,可以发现它们有规律,里面包含三类关键词: Blocking、CopyOnWrite、Concurrent

  • Blocking 大部分实现基于锁,并提供用来阻塞的方法
  • CopyOnWrite 之类容器修改开销相对较重 (保护性拷贝)
  • Concurrent 类型的容器
    • 内部很多操作使用 cas 优化,一般可以提供较高吞吐量
    • 弱一致性
      • 遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍 历,这时内容是旧的
      • 求大小弱一致性,size 操作未必是 100% 准确
      • 读取弱一致性

对于非安全容器来讲,遍历时如果发生了修改,使用 fail-fast 机制也就是让遍历立刻失败,抛出 ConcurrentModificationException,不再继续遍历

八、ConcurrentHashMap

1、基本使用(字符统计)

生成 10个字符串,每个字符串中含有1000个26个字母,,也就是整个字符数组中每个字符有10000个。

    public static String[] createStrs(){
        String[] strs = new String[10];
        for (int i = 0; i < 10; i++) {
            StringBuilder builder = new StringBuilder();
            for (int j = 0; j < 1000; j++) {
                builder.append("abcedfghijklmnopqrstuvwxyz");
            }
            strs[i] = builder.toString();
        }
        return strs;
    }

接着使用map对字符数组中每个字符的个数进行统计。具体方法是使用10线程,每个线程对字符数组中的一个字符串使用map进行统计。其中CountDownLatch的作用是,等到10个统计线程都结束之后在输出。代码如下:

    public static void main(String[] args) throws InterruptedException {

        String[] strs = createStrs();
        
        //对strs中每个字符的个数进行统计
        HashMap<Character, Integer> map = new HashMap<>();
        
        //CountDownLatch让主线等待其他10线程执行完毕之后在输出
        CountDownLatch latch = new CountDownLatch(10);

        //创建strs.length个线程
        for (int i = 0; i < strs.length; i++) {
            int finalI = i;
            //每个线程对strs中的一个字符串进行字符个数统计
            new Thread(()->{
                char[] chars = strs[finalI].toCharArray();

                //遍历字符串进行统计
                for (char ch : chars) {
                    //会出现线程不安全的地方
                    Integer value = map.get(ch);
                    Integer counter = (value == null) ? 1 : value + 1;
                    map.put(ch, counter);
                }
                latch.countDown();
            }).start();
        }
        latch.await();
        System.out.println(map);
    }

结果如下所示,可以看出字符个数统计的结果是不正确的。这是因为在上面的代码中的20~23行,虽然每个线程统计的是不同的字符串,但是每个字符串中的字符是重复的。

也就是map的key是重复的,这就可能导致可能线程A调用了map.get,还没来得及调用map.put,线程B也对同一个字符调用了map.getmap.put,之后线程A调用map.put时就会把线程B修改的结果覆盖掉

{a=9800, b=9747, c=9804, d=9817, e=9754, f=9764, g=9800, h=9753, i=9799, j=9780, k=9748, l=9778, m=9797, n=9764, o=9293, p=9764, q=9801, r=9760, s=9795, t=9779, u=9797, v=9304, w=9807, x=9763, y=9794, z=9763}

线程我们把HashMap换成ConcurrentHashMap看看还会不会出现这样的问题:

ConcurrentHashMap<Character, Integer> map = new ConcurrentHashMap<>();
//HashMap<Character, Integer> map = new HashMap<>();

结果如下,我们发现结果仍然是不正确的。不是说ConcurrentHashMap是线程安全的吗?这是为什么呢?

其实原因之前介绍过,ConcurrentHashMap的线程安全只能保证它的每个方法是线程安全的,多个方法的组合并不能保证是线程安全的

{a=9099, b=9408, c=9466, d=9468, e=9464, f=9455, g=9488, h=9417, i=9341, j=9435, k=9397, l=9418, m=9479, n=9440, o=9240, p=9330, q=9442, r=9416, s=9459, t=9412, u=9468, v=9428, w=9371, x=9409, y=9456, z=9411}

那么应该怎么实现呢?当然可以使用synchronized将代码20~23行包裹起来实现阻塞,如下面的代码所示。

//会出现线程不安全的地方
synchronized (map) {
    Integer value = map.get(ch);
    Integer counter = (value == null) ? 1 : value + 1;
    map.put(ch, counter);
}

结果也是没有问题的,但是这样会使得效率过低。下面我们来介绍一下ConcurrentHashMap应该怎么使用:

{a=10000, b=10000, c=10000, d=10000, e=10000, f=10000, g=10000, h=10000, i=10000, j=10000, k=10000, l=10000, m=10000, n=10000, o=10000, p=10000, q=10000, r=10000, s=10000, t=10000, u=10000, v=10000, w=10000, x=10000, y=10000, z=10000}

我可以使用ConcurrentHashMap配合原子自增类LongAdder使用,具体实现方法就是将map中value的类型换为线程安全的LongAdder,然后使用computeIfAbsent,该方法参数是key和如果key不存在时要做的操作(在这里是创建一个原子自增对象LongAdder)。返回值是新生成的value,也就是LongAdder对象,接着我们就可以使LongAdder进行自增操作

    public static void main(String[] args) throws InterruptedException {

        String[] strs = createStrs();

        //对strs中每个字符的个数进行统计
        ConcurrentHashMap<Character, LongAdder> map = new ConcurrentHashMap<>();

        //CountDownLatch让主线等待其他10线程执行完毕之后在输出
        CountDownLatch latch = new CountDownLatch(10);

        //创建strs.length个线程
        for (int i = 0; i < strs.length; i++) {
            int finalI = i;
            //每个线程对strs中的一个字符串进行字符个数统计
            new Thread(()->{
                char[] chars = strs[finalI].toCharArray();

                //遍历字符串进行统计
                for (char ch : chars) {
                    LongAdder longAdder = map.computeIfAbsent(ch, (key) -> new LongAdder());
                    longAdder.increment();
                }
                latch.countDown();
            }).start();
        }
        latch.await();
        System.out.println(map);
    }

可以看出结果是没有问题的,原因是map.computeIfAbsentlongAdder.increment这两个方法都使用CAS操作保证了线程安全的。

{a=10000, b=10000, c=10000, d=10000, e=10000, f=10000, g=10000, h=10000, i=10000, j=10000, k=10000, l=10000, m=10000, n=10000, o=10000, p=10000, q=10000, r=10000, s=10000, t=10000, u=10000, v=10000, w=10000, x=10000, y=10000, z=10000}
2、 JDK 7 HashMap 并发死链

参考

在这里插入图片描述

在这里插入图片描述

总结

  • 究其原因,是因为在多线程环境下使用了非线程安全的 map 集合
  • JDK 8 虽然将扩容算法做了调整,不再将元素加入链表头(而是保持与扩容前一样的顺序),但仍不意味着能 够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)
3、 JDK 8 ConcurrentHashMap 原理
1)重要属性和内部类
// 默认为 0 
// 当初始化时, 为 -1 
// 当扩容时, 为 -(1 + 扩容线程数) 
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小 
private transient volatile int sizeCtl;
 
// 整个 ConcurrentHashMap 就是一个 Node[] 
static class Node<K,V> implements Map.Entry<K,V> {}
 
// hash 表 
transient volatile Node<K,V>[] table;
 
// 扩容时的 新 hash 表 
private transient volatile Node<K,V>[] nextTable;
 
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点 
static final class ForwardingNode<K,V> extends Node<K,V> {}
 
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node 
static final class ReservationNode<K,V> extends Node<K,V> {}
 
// 作为 treebin 的头节点, 存储 root 和 first 
static final class TreeBin<K,V> extends Node<K,V> {}
 
// 作为 treebin 的节点, 存储 parent, left, right 
static final class TreeNode<K,V> extends Node<K,V> {}
2)重要方法
// 获取 Node[] 中第 i 个 Node 
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)   

// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值 
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)    
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值 
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
3)构造器分析

可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建

public ConcurrentHashMap(int initialCapacity,
                         float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    //如果initialCapacity小于concurrencyLevel(并发度)
    //则将其改为concurrencyLevel
    if (initialCapacity < concurrencyLevel)   // Use at least as many bins
        initialCapacity = concurrencyLevel;   // as estimated threads
    //之后还要在经过下面的公式计算
    long size = (long)(1.0 + (long)initialCapacity / loadFactor);
    //最后要取大于size的最小的2^n
     // tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ... 
    int cap = (size >= (long)MAXIMUM_CAPACITY) ?
        MAXIMUM_CAPACITY : tableSizeFor((int)size);
    this.sizeCtl = cap;
}
4)get 流程
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
     // spread 方法能确保返回结果是正数 
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        //根据hash码找到头节点,(n - 1) & h相当于取模运算
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果头结点已经是要查找的 key        
        if ((eh = e.hash) == h) {
            //判断头节点的key是否等于传进来的key,或者equals
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
         // hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找     
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        // 正常遍历链表, 遍历链表查找key对应的value      
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
5)put 流程

以下数组简称(table),链表简称(bin)

public V put(K key, V value) {
    return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    //key和value都不允许为空
    if (key == null || value == null) throw new NullPointerException();
     // 其中 spread 方法会综合高位低位, 具有更好的 hash 性
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        // f 是链表头节点        
        // fh 是链表头结点的 hash        
        // i 是链表在 table 中的下标     
        Node<K,V> f; int n, i, fh;
         // 需要创建 table        
        if (tab == null || (n = tab.length) == 0)
            // 初始化 table 使用了 cas, 无需 synchronized 
            //无论是否创建成功, 进入下一轮循环 
            tab = initTable();
         // 当前桶为空,则创建链表头节点        
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
             // 添加链表头使用了 cas, 无需 synchronized   
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
         // 如果检测到该桶正在扩容,则帮忙扩容        
        else if ((fh = f.hash) == MOVED)
             // 帮忙之后, 进入下一轮循环            
            tab = helpTransfer(tab, f);
        
        //没有在扩容或者转换红黑树,而且发生桶下标冲突
        else {
            V oldVal = null;
             // 只锁住链表头节点            
            synchronized (f) {
                 // 再次确认链表头节点没有被移动              
                if (tabAt(tab, i) == f) {
                     // 链表      
                    //fh(头节点hash码)大于0说明是普通连接
                    //如果是红黑树或者正在扩容fh<0
                    if (fh >= 0) {
                        binCount = 1;
                         // 遍历链表                        
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                             // 找到相同的 key ,则更新value                         
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                 // 更新                               
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                             // 已经是后的节点了, 新增 Node, 追加至链表尾 
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                     // 红黑树                    
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                         // putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode 
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
                 // 释放链表头节点的锁           
            }
            //binCount为该桶下链表的长度
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                     // 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树 
                    //链表转为红黑树要求数组长度64之后才会进行,之前都只会扩容
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
      // 增加 size 计数 ,采用了多个累加单元的形式
    addCount(1L, binCount);
    return null;
}

//创建hash表,懒惰触发
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
         // 使用CAS尝试将 sizeCtl 设置为 -1(表示初始化 table)        
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            // 相当于获得锁, 可以继续创建 table, 
            //这时其它线程会在 while() 循环中 yield 直至 table 创建完成
            try {
                if ((tab = table) == null || tab.length == 0) {
                    //如果传入的有值则使用该值,否则使用默认16
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    //new一个Node数组
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //让sizeCtl为下一次扩容的阈值
                    //下面的公式等于sc = n * (3 / 4)
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
 
// put最后调用,增加元素个数的计数
// check 是之前 binCount 的个数
// 和LongAdder思想类似,设置多个累加单元,多线程下更高效
//另外如果超过阈值会进行帮助扩容操作
private final void addCount(long x, int check) {
    //as:累加单元数组
    CounterCell[] as; long b, s;    
    
    if (
     	// 已经有了 counterCells, 向 cell 累加    
        (as = counterCells) != null ||
         // 还没有, 向 baseCount 累加        
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        
        CounterCell a; long v; int m;
        boolean uncontended = true;
                
        if (// 还没有 counterCells 数组
            as == null || (m = as.length - 1) < 0 ||
            // 还没有 cell            (
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
             // cell cas 增加计数失败            
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
             // 创建累加单元数组和cell, 累加重试          
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        // 获取元素个数 
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                 // newtable 已经创建了,帮忙扩容                
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
             // 需要扩容,这时 newtable 未创建            
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}
6)size 计算流程

size 计算实际发生在 put,remove 改变集合元素的操作之中

  • 没有竞争发生,向 baseCount 累加计数
  • 有竞争发生,新建 counterCells,向其中的一个 cell 累加计数
    • counterCells 初始有两个 cell
    • 如果计数竞争比较激烈,会创建新的 cell 来累加计数
public int size() {
    long n = sumCount();
    return ((n < 0L) ? 0 : (n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) n);
}

final long sumCount() {
    CounterCell[] as = counterCells;
    CounterCell a;
    // 将 baseCount 计数与所有 cell 计数累加 
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null) sum += a.value;
        }
    }
    return sum;
}
7)transfer扩容流程
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    //创建新的数组
    if (nextTab == null) {            // initiating
        try {
            @SuppressWarnings("unchecked")
            //新数组的大小为原来的2倍(n << 1)
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 搬迁完毕尝试设置状态
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        //检测到已经搬迁完毕,继续执行下一个桶
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    //链表搬迁逻辑
                    if (fh >= 0) {
                        //...
                    }
                    //红黑树搬迁逻辑
                    else if (f instanceof TreeBin) {
                        //....
                    }
                }
            }
        }
    }
}
8)总结★

Java 8 数组(Node) +( 链表 Node | 红黑树 TreeNode ) 以下数组简称(table),链表简称(bin)

  • 初始化:使用 cas 来保证并发安全,懒惰初始化 table
  • 转换红黑树:当table.length<64时,先尝试扩容,当超过64时,并且bin.length>8时,会将链表红黑树化(与JDK 7的不同),树化过程会用 synchronized 锁住链表头
  • put:如果该bin尚未创建,只需要使用CAS创建bin;如果已经有了,锁住链表头,进行后续put操作,元素添加到bin尾部(与JDK 7的不同)
  • get:无锁操作仅需保证可见性,扩容过程中get操作拿到的是ForwardingNode ,它会让get操作去新的table进行
  • 扩容:扩容以bin为单位进行,需要对 bin 进行 synchronized。这时其他线程并不是无事可做,而是帮助其他bin进行进行扩容(转移bin中的Node),扩容时平均只有 1/6 的节点会把复制到新 table 中
  • size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中。后统计数量时累加 即可(思路类似LongAdder)
4、 JDK 7 ConcurrentHashMap

它维护了一个 segment 数组,每个 segment 对应一把锁

  • 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的
  • 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化

在这里插入图片描述

可以看到 1.7的ConcurrentHashMap 没有实现懒惰初始化,空间占用不友好
其中 this.segmentShift 和 this.segmentMask 的作用是决定将 key 的 hash 结果匹配到哪个 segment 例如,根据某一 hash 值求 segment 位置,先将高位向低位移动 this.segmentShift 位

在这里插入图片描述

九、LinkedBlockingQueue 原理

1、基本的入队出队
public class LinkedBlockingQueue<E> extends AbstractQueue<E>        
    implements BlockingQueue<E>, java.io.Serializable {    
    static class Node<E> {
         E item;
 
        /**         
        * next的值有下列三种情况之一         
        * - 真正的后继节点         
        * - 自己, 发生在出队时        
        * - null, 表示是没有后继节点, 是后了         
        */        
        Node<E> next;
 
        Node(E x) { item = x; }    
    } 
}

入队(enqueue)

初始化链表 last = head = new Node<E>(null); Dummy 节点用来占位,item 为 null

在这里插入图片描述

当一个节点入队 last = last.next = node;

在这里插入图片描述

再来一个节点入队 last = last.next = node;

在这里插入图片描述

出队(dequeue,从头结点出)

Node<E> h = head; 
Node<E> first = h.next; 
h.next = h; // help GC 
head = first; 
E x = first.item; 
first.item = null; 
return x;

h = head

在这里插入图片描述

first = h.next

在这里插入图片描述

h.next = h

在这里插入图片描述

head = first

在这里插入图片描述

E x = first.item; 
first.item = null; 
return x;

在这里插入图片描述

2、加锁分析

高效之处在于:用了两把锁和 dummy 节点

  • 用一把锁,同一时刻,多只允许有一个线程(生产者或消费者,二选一)执行
  • 用两把锁,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
    • 消费者与消费者线程仍然串行
    • 生产者与生产者线程仍然串行
    • 消费者与生产者线程可以并行

线程安全分析

  • 当节点总数大于 2 时(包括 dummy 节点),putLock 保证的是 last 节点的线程安全,takeLock 保证的是 head 节点的线程安全。两把锁保证了入队和出队没有竞争
  • 当节点总数等于 2 时(即一个 dummy 节点,一个正常节点)这时候,仍然是两把锁锁两个对象,不会竞争
  • 当节点总数等于 1 时(就一个 dummy 节点)这时 take 线程会被 notEmpty 条件阻塞,有竞争,会阻塞
// 用于 put(阻塞) offer(非阻塞) 
private final ReentrantLock putLock = new ReentrantLock();
 
// 用户 take(阻塞) poll(非阻塞) 
private final ReentrantLock takeLock = new ReentrantLock();
3、put 操作
public void put(E e) throws InterruptedException {
    if (e == null) throw new NullPointerException();
    int c = -1;
    Node<E> node = new Node<E>(e);
    final ReentrantLock putLock = this.putLock;
    // count 用来维护元素计数
    final AtomicInteger count = this.count;
    putLock.lockInterruptibly();
    try {
        // 满了等待 
        while (count.get() == capacity) {
             // 倒过来读就好: 等待 notFull        
            notFull.await();
        }
         // 有空位, 入队且计数加一     
        enqueue(node);
        c = count.getAndIncrement();
         // 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程    
        if (c + 1 < capacity)
            notFull.signal();
    } finally {
        putLock.unlock();
    }
     // 如果队列中有一个元素, 叫醒 take 线程 
    if (c == 0)
         // 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
        signalNotEmpty();
}
4、take 操作
public E take() throws InterruptedException {
    E x;
    int c = -1;
    final AtomicInteger count = this.count;
    final ReentrantLock takeLock = this.takeLock;
    takeLock.lockInterruptibly();
    try {
        while (count.get() == 0) {
            notEmpty.await();
        }
        x = dequeue();
        c = count.getAndDecrement();
        if (c > 1)
            notEmpty.signal();
    } finally {
        takeLock.unlock();
    }
    // 如果队列中只有一个空位时, 叫醒 put 线程    
    // 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity 
    if (c == capacity)
        // 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
        signalNotFull();
    return x;
}
5、性能比较

LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较

  • Linked 支持有界,Array 强制有界
  • Linked 实现是链表,Array 实现是数组
  • Linked 是懒惰的,而 Array 需要提前初始化 Node 数组
  • Linked 每次入队会生成新 Node,而 Array 的 Node 是提前创建好的
  • Linked 两把锁,Array 一把锁

十、ConcurrentLinkedQueue

ConcurrentLinkedQueue 的设计与 LinkedBlockingQueue 非常像,也是

  • 两把【锁】,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行
  • dummy 节点的引入让两把【锁】将来锁住的是不同对象,避免竞争
  • 只是这【锁】使用了 cas 来实现

事实上,ConcurrentLinkedQueue 应用还是非常广泛的

例如之前讲的 Tomcat 的 Connector 结构时,Acceptor 作为生产者向 Poller 消费者传递事件信息时,正是采用了 ConcurrentLinkedQueue 将 SocketChannel 给 Poller 使用
在这里插入图片描述

十一、CopyOnWriteArrayList

CopyOnWriteArraySet 是它的马甲 底层实现采用了 写入时拷贝 的思想,增删改操作会将底层数组拷贝一份,更 改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。 以新增为例:

public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        // 获取旧的数组
        Object[] elements = getArray();
        int len = elements.length;
         // 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
        Object[] newElements = Arrays.copyOf(elements, len + 1);
         // 添加新元素
        newElements[len] = e;
        // 替换旧的数组        
        setArray(newElements);
        return true;
    } finally {
        lock.unlock();
    }
}

其它读操作并未加锁,例如:

public void forEach(Consumer<? super E> action) {
    if (action == null) throw new NullPointerException();
    Object[] elements = getArray();
    int len = elements.length;
    for (int i = 0; i < len; ++i) {
        @SuppressWarnings("unchecked") E e = (E) elements[i];
        action.accept(e);
    }
}

适合**『读多写少』**的应用场景

get 弱一致性

在这里插入图片描述

迭代器弱一致性

CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
    list.remove(0);
    System.out.println(list);
}).start();

sleep1s();
//会出现弱一致性
while (iter.hasNext()) {
    System.out.println(iter.next());
}

不要觉得弱一致性就不好

  • 数据库的 MVCC 都是弱一致性的表现
    ck.unlock();
    }
    }

其它读操作并未加锁,例如:

```java
public void forEach(Consumer<? super E> action) {
    if (action == null) throw new NullPointerException();
    Object[] elements = getArray();
    int len = elements.length;
    for (int i = 0; i < len; ++i) {
        @SuppressWarnings("unchecked") E e = (E) elements[i];
        action.accept(e);
    }
}

适合**『读多写少』**的应用场景

get 弱一致性

[外链图片转存中…(img-aGjmhz87-1591368809267)]

迭代器弱一致性

CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
    list.remove(0);
    System.out.println(list);
}).start();

sleep1s();
//会出现弱一致性
while (iter.hasNext()) {
    System.out.println(iter.next());
}

不要觉得弱一致性就不好

  • 数据库的 MVCC 都是弱一致性的表现
  • 并发高和一致性是矛盾的,需要权衡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值