零和博弈中范式概率的计算

数学家约翰·冯·诺伊曼提出,在零和博弈中,玩家应计算胜出概率并依据概率选择行动。红方选择动作1的概率为4/7,动作2的概率为3/7;蓝方在排除行动A后,选B和C的概率分别为4/7和3/7。通过极小化极大算法确定最佳战略。文章探讨了如何计算这些概率,并引用了相关案例和资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题

数学家约翰·冯·诺伊曼认为概率可以解决这一困境。这两名玩家应对其可选的行动计算其胜出概率,然后根据这些概率,使用一个随机逻辑元件,选择他们的行动。每个玩家计算概率。这极小化极大算法可以计算所有二人零和游戏的最佳战略。
对应上面的例子,红方选择动作1的概率为4/7和行动2的概率为3/7,而蓝方选择动作的概率为0、4/7和3/7,对应A、B和C三个行动。及后红方平均每场比赛将会赢得20/7分。
维基百科中文零和博弈—解决方案—范例
英文维基百科也有该例子—soulution—example

这里写图片描述

红方选择动作1的概率为4/7和行动2的概率为3/7,这两个概率是怎么算的?

2. 计算方法

计算方法主要参考链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值