泊松过程的到达时间分布是其最重要的性质之一,它描述了事件在某段时间内的发生情况。我们将详细讨论 泊松过程 的事件到达时间分布,包括事件发生的间隔分布和累积发生时间的分布。
1. 泊松过程的定义
假设 ( {N(t), t >= 0} ) 是一个参数为 λ \lambda λ的泊松过程,其中 (N(t)) 表示时间 (t) 时发生的事件总数,且具有以下性质:
- (N(0) = 0)。
- 独立增量性:对任意的 (t_1 < t_2),在 ( [t_1, t_2] ) 内发生的事件数 (N(t_2) - N(t_1)) 与过去事件无关,独立于 ([0, t_1]) 之前的事件数。
- 定常增量性:任意时间段 ([t, t + h]) 内发生事件的数量 (N(t + h) - N(t)) 只依赖于长度 (h),与 (t) 无关。
- 在很短的时间间隔 (h) 内,发生 1 次事件的概率大约是 ( λ h \lambda h λh ),发生两次或更多事件的概率是 (o(h))-无穷小量。
基于这些性质,我们可以得到泊松过程的到达时间分布。
2. 事件到达间隔时间的分布
泊松过程的事件到达间隔时间是相互独立的,且服从指数分布。
a. 首次事件到达时间分布
设 (T_1) 是首次事件发生的时间,即 ( T 1 = inf { t > 0 : N ( t ) = 1 } (T_1 = \inf \{ t > 0 : N(t) = 1 \} (T1=inf{t>0:N(t)=1})。我们希望知道 (T_1) 的分布。
泊松分布的分布函数为:
P ( N ( t ) = k ) = ( λ t ) k e − λ t k ! P(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!} P(N(t)=k)=k!(λt)ke−λt
对任意时间 (t > 0),事件在 (t) 时刻仍未发生的概率为:
P ( T 1 > t ) = P ( N ( t ) = 0 ) = e − λ t P(T_1 > t) = P(N(t) = 0) = e^{-\lambda t} P(T1>t)=P(N(t)=0)=e−λt
因此,首次事件发生的时间 (T_1) 的累积分布函数为:
P ( T 1 ≤ t ) = 1 − P ( T 1 > t ) = 1 − e − λ t P(T_1 \leq t) = 1 - P(T_1 > t) = 1 - e^{-\lambda t} P(T1≤t)=1−P(T1>t)=1−e−λt
由此,我们可以得到 (T_1) 的概率密度函数:
f T 1 ( t ) = d d t ( 1 − e − λ t ) = λ e − λ t , t ≥ 0 f_{T_1}(t) = \frac{d}{dt} \left( 1 - e^{-\lambda t} \right) = \lambda e^{-\lambda t}, \quad t \geq 0 fT1(t)=dtd(1−e−λt)=λe−λt,t≥0
所以,首次事件发生的时间 (T_1) 服从参数为 ( \lambda ) 的指数分布,即 ( T 1 ∼ Exp ( λ ) (T_1 \sim \text{Exp}(\lambda) (T1∼Exp(λ))。
b. 后续事件的到达间隔分布
假设 (T_k) 是第 (k) 次事件发生的时间,而 S_k = T_k - T_{k-1}表示第 (k) 次事件与第 (k-1) 次事件的时间间隔。泊松过程具有独立增量性,因此每个到达间隔 (S_k) 也是相互独立的,并且和首次事件的到达时间 (T_1) 一样,服从参数为 λ \lambda λ的指数分布:
S k ∼ Exp ( λ ) , k = 1 , 2 , 3 , … S_k \sim \text{Exp}(\lambda), \quad k = 1, 2, 3, \dots Sk∼Exp(λ),k=1,2,3,…
换句话说,每次事件发生的时间间隔都是独立的,并且服从相同的指数分布。
3. 累积到达时间的分布
设 (T_k) 表示第 (k) 次事件发生的时刻,那么 (T_k) 是前 (k) 个独立的指数分布随机变量之和。由于 ( S 1 , S 2 , … , S k (S_1, S_2, \dots, S_k (S1,S2,…,Sk) 互相独立,且均服从 ( Exp ( λ ) ( \text{Exp}(\lambda) (Exp(λ)) 分布,因此 (T_k) 的分布为伽马分布。
a. 第 (k) 次事件到达时间分布
我们可以写出第 (k) 次事件发生时刻 (T_k) 为:
T k = S 1 + S 2 + ⋯ + S k T_k = S_1 + S_2 + \dots + S_k Tk=S1+S2+⋯+Sk
其中每个 (S_i) 都服从 ( Exp ( λ ) ( \text{Exp}(\lambda) (Exp(λ))。根据伽马分布的性质,(T_k) 服从伽马分布,参数为 (k) 和 ( λ (\lambda (λ),记作 ( T k ∼ Gamma ( k , λ ) (T_k \sim \text{Gamma}(k, \lambda) (Tk∼Gamma(k,λ)),其概率密度函数为:
f T k ( t ) = λ k t k − 1 e − λ t ( k − 1 ) ! , t ≥ 0 f_{T_k}(t) = \frac{\lambda^k t^{k-1} e^{-\lambda t}}{(k-1)!}, \quad t \geq 0 fTk(t)=(k−1)!λktk−1e−λt,t≥0
这意味着,第 (k) 次事件发生的时间 (T_k) 服从参数为 (k) 和 ( λ (\lambda (λ) 的伽马分布。
4. 泊松过程的性质总结
- 到达间隔时间 (S_k) 是相互独立的,且每个 ( S k ∼ Exp ( λ ) (S_k \sim \text{Exp}(\lambda) (Sk∼Exp(λ))。
- 第 (k) 次事件的发生时刻 (T_k) 是前 (k) 个到达间隔的和,服从参数为 (k) 和 ( λ (\lambda (λ) 的伽马分布。
- 泊松过程的无记忆性:泊松过程的事件到达时间分布具有无记忆性,这意味着未来的事件分布与过去发生了多少次事件无关。