Pytorch笔记-3

NLP FROM SCRATCH: CLASSIFY NAMES WITH A CHARACTER-LEVEL RNN

我们将建立和训练一个基于字符级的RNN模型,用来分类words。本教程将展示如何从零开始预处理数据,然后构建NLP模型。特别是没有使用torchtext的一些功能情况下,如何用底层模块进行NLP建模前的预处理工作。

基于字符级的RNN模型,以a series of characters的形式读取words,最终的预测的输出结果,是这个words属于哪一类。

具体来说,我们将18种语言的几千个姓氏进行训练,根据姓氏的拼写预测属于哪一类语言。如下展示:

$ python predict.py Hinton
(-0.47) Scottish
(-1.52) English
(-3.57) Irish

$ python predict.py Schmidhuber
(-0.19) German
(-2.48) Czech
(-2.68) Dutch

1. Preparing the Data

下载数据,路径:https://download.pytorch.org/tutorial/data.zip, 然后提取到当前目录。

目录data/names含有18个文件,以 “[Language].txt”命名。每个文件包含了许多姓氏(names),每行一个姓氏(name),很多事罗马字体书写。我们需要从Unicode编码转换到ASCII编码。

我们将会以字典形式表示,如:{language:[names,…]}。

from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os

def findFiles(path):
    return glob.glob(path)
print(findFiles('.data/data/names/*.txt'))
['.data/data/names\\Arabic.txt', '.data/data/names\\Chinese.txt', '.data/data/names\\Czech.txt', '.data/data/names\\Dutch.txt', '.data/data/names\\English.txt', '.data/data/names\\French.txt', '.data/data/names\\German.txt', '.data/data/names\\Greek.txt', '.data/data/names\\Irish.txt', '.data/data/names\\Italian.txt', '.data/data/names\\Japanese.txt', '.data/data/names\\Korean.txt', '.data/data/names\\Polish.txt', '.data/data/names\\Portuguese.txt', '.data/data/names\\Russian.txt', '.data/data/names\\Scottish.txt', '.data/data/names\\Spanish.txt', '.data/data/names\\Vietnamese.txt']
import unicodedata
import string
# string.ascii_letters返回值为 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
all_letters = string.ascii_letters + " .,;'"
n_letters = len(all_letters)

# turn a unicode string to ascii
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)          # normalize() 第一个参数指定字符串标准化的方式
        if unicodedata.category(c) != 'Mn' and c in all_letters   #  category()把一个字符返回它在UNICODE里分类的类型
                  )
print(unicodeToAscii('Ślusàrski'))
Slusarski
# Build the category_lines dictionary, a list of names per language
category_lines = {}
all_categories = []

# Read a file and split into lines
def readLines(filename):
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]

for filename in findFiles('.data/data/names/*.txt'):
    # # os.path.basename('.data/data/names\\Arabic.txt') 返回 'Arabic.txt';  os.path.splitext('Arabic.txt') 返回 ('Arabic', '.txt')
    category = os.path.splitext(os.path.basename(filename))[0]       
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines
n_categories = len(all_categories)   

print(category_lines['English'][:5])
['Abbas', 'Abbey', 'Abbott', 'Abdi', 'Abel']

2. Turning Names into Tensors

我们已经有了文本数据,下面需要把它们转换成Tensors,以便于使用它们。

我们使用one-hot vector进行字母表示,例如:“b”= <0, 1, 0, 0, …>,用n_letters表示vector的长度。因此构建单词,我们可以用2D矩阵表示 <line_length × n_letters>。由于pytorch的输入数据都是以batches形式,因此我们加入额外的1,即batches大小为1,即2D矩阵表示是<line_length × 1 × n_letters>

import torch

# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(letter):
    return all_letters.find(letter)

# Just for demonstration, turn a letter into a <1 × n_letters> Tensor
def letterToTensor(letter):
    tensor = torch.zeros(1, n_letters)
    tensor[0][letterToIndex(letter)] = 1
    return tensor

# Turn a line into a <line_length × 1 × n_letters>,
# or an array of one-hot letter vectors 
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor

print(lineToTensor('zhang').size())
torch.Size([5, 1, 57])

3. Creating the Network

RNN原理图
image.png
公式如下
image-2.png

import torch.nn as nn

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        # LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x))
        self.softmax = nn.LogSoftmax(dim=1)
    
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)  # 轴维度是1,进行拼接,比如:input: size([1, 57]),  hidden: size([1, 128]), 拼接后combind: size([1, 185])
        hidden = self.i2h(combined)
        # print(hidden.size())  # torch.Size([1, 128])
        output = self.i2o(combined)
        # print(output.size())  # torch.Size([1, 18])
        output = self.softmax(output)
        # print(output.size())  # torch.Size([1, 18])
        return output, hidden
    
    def initHidden(self):
        # 初始化初始时刻的hidden
        return torch.zeros(1, self.hidden_size)

n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_categories)
input = letterToTensor('A')
hidden = torch.zeros(1, n_hidden)
output, next_hidden = rnn(input, hidden)
input = lineToTensor('Albert')
hidden = torch.zeros(1, n_hidden)
print('input[0] size: ', input[0].size())
output, next_hidden = rnn(input[0], hidden)
print(output)
input[0] size:  torch.Size([1, 57])
tensor([[-2.8574, -2.9403, -2.8987, -2.8663, -2.8174, -2.8526, -2.8784, -2.9954,
         -2.8876, -2.9161, -2.8894, -2.9150, -2.8291, -2.8791, -2.9451, -2.9624,
         -2.9141, -2.8041]], grad_fn=<LogSoftmaxBackward>)

4. Training

4.1 Preparing for Training
def categoryFromOutput(output):
    # output.topk(k) 返回top k(从大到小排序)及其索引
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i
print(categoryFromOutput(output))
('Vietnamese', 17)
import random

def randomChoice(l):
    # 随机选择一个category, random.randint(0, n)表示在0-n之间返回一个int。
    return l[random.randint(0, len(l)-1)]

def randomTrainingExample():
    # 随机某一个category
    category = randomChoice(all_categories)
    # 某category下的names,随机选择一个name
    line = randomChoice(category_lines[category])
    # 某category的索引值构建tensor
    category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
    # Turn a line into a <line_length × 1 × n_letters>,
    line_tensor = lineToTensor(line)
    return category, line, category_tensor, line_tensor

for i in range(10):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    print('category = ', category, '/ line =', line)
category =  Portuguese / line = Mata
category =  Irish / line = Reynold
category =  Greek / line = Patselas
category =  Japanese / line = Tono
category =  Dutch / line = Rijnders
category =  Chinese / line = Weng
category =  Korean / line = Hyun 
category =  Czech / line = Bacon
category =  Vietnamese / line = Thao
category =  Scottish / line = Hunter
4.2 Training the Network

由于RNN的最后一层是nn.LogSoftmax,所以损失函数用nn.NLLLoss是很合理的。

criterion = nn.NLLLoss()

learning_rate = 0.005
def train(category_tensor, line_tensor):
    # 初始化第0时刻的hidden
    hidden = rnn.initHidden()
    
    rnn.zero_grad()
    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)
    # nn.NLLLoss()的输入,一个参数经Log(Softmax(x))产生的结果,如:[[a,b,c], [d, e, f]],另一个参数是真实label,如:[2, 1]
    # 那么返回结果:(abs(c) + abs(e))/2
    loss = criterion(output, category_tensor)
    loss.backward()
    # 更新参数
    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate)
        
    return output, loss.item()
    
import time
import math

n_iters = 100000
print_every = 5000
plot_every = 1000

# keep track of losses for plotting
current_loss = 0
all_losses = []

def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

start = time.time()
for iter in range(1, n_iters + 1):
    # 随机获取某category和name
    category, line, category_tensor, line_tensor = randomTrainingExample()
    output, loss = train(category_tensor, line_tensor)
    current_loss += loss
    
    if iter % print_every == 0:
        # 返回:输出值 output 下的预测值和预测索引
        guess, guess_i = categoryFromOutput(output)
        correct = '✓' if guess == category else '✗ (%s)' % category
        print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
    
    if iter % plot_every == 0:
        all_losses.append(current_loss / plot_every)
        current_loss = 0
        
5000 5% (0m 7s) 3.4818 Gwang  / English ✗ (Korean)
10000 10% (0m 14s) 2.7052 Pickard / Japanese ✗ (English)
15000 15% (0m 21s) 1.3434 Shum / Vietnamese ✗ (Chinese)
20000 20% (0m 28s) 2.8701 Duval / Arabic ✗ (French)
25000 25% (0m 36s) 0.2168 Dioletis / Greek ✓
30000 30% (0m 43s) 3.8010 See / Chinese ✗ (Dutch)
35000 35% (0m 50s) 1.6385 Rheem / Chinese ✗ (Korean)
40000 40% (0m 57s) 2.0398 Prince / French ✗ (English)
45000 45% (1m 5s) 0.2634 Lillis / Greek ✓
50000 50% (1m 12s) 2.4283 Seto / German ✗ (Chinese)
55000 55% (1m 19s) 1.3758 Rorris / Portuguese ✗ (Greek)
60000 60% (1m 26s) 0.6361 Gan / Chinese ✓
65000 65% (1m 34s) 2.3103 Bando / Italian ✗ (Japanese)
70000 70% (1m 41s) 1.2810 Chi / Vietnamese ✗ (Korean)
75000 75% (1m 48s) 2.4544 Nasato / Japanese ✗ (Italian)
80000 80% (1m 55s) 0.2323 Marchetti / Italian ✓
85000 85% (2m 3s) 0.0846 Sayuki / Japanese ✓
90000 90% (2m 10s) 1.3112 Han / Chinese ✗ (Vietnamese)
95000 95% (2m 17s) 0.6068 Suarez / Spanish ✓
100000 100% (2m 24s) 0.3425 Adamczyk / Polish ✓
4.3 Plotting the Results
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

plt.figure()
plt.plot(all_losses)
[<matplotlib.lines.Line2D at 0x2e3991a1a90>]

png

1.5 Evaluating the Results

# confusion matrix:每一行表示真实category,每一列表示预测的category
confusion = torch.zeros(n_categories, n_categories)
n_confusion = 10000
# Just return an output given a line
def evaluate(line_tensor):
    hidden = rnn.initHidden()
    
    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)
    return output


# Go through a bunch of examples and record which are correctly guessed
for i in range(n_confusion):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    output =  evaluate(line_tensor)
    guess, guess_i = categoryFromOutput(output)
    category_i = all_categories.index(category)
    # 表示真实是category_i下,预测guess_i的下个数。
    confusion[category_i][guess_i] += 1

# Normalize by dividing every row by its sum
for i in range(n_categories):
    # 每行标准化,也就是真实category的总量,同一行被分配的数量的占比
    confusion[i] = confusion[i] / confusion[i].sum()

# set up plot
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(confusion.numpy())
fig.colorbar(cax)
# set up axes
ax.set_xticklabels([''] + all_categories, rotation=90)
ax.set_yticklabels([''] + all_categories)
# Force label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

# sphinx_gallery_thumbnail_number = 2
plt.show()


c:\users\86135\anaconda3\envs\torch\lib\site-packages\ipykernel_launcher.py:33: UserWarning: FixedFormatter should only be used together with FixedLocator
c:\users\86135\anaconda3\envs\torch\lib\site-packages\ipykernel_launcher.py:34: UserWarning: FixedFormatter should only be used together with FixedLocator

png

1.6 Running on User Input

def predict(input_line, n_predictions=3):
    print('\n> %s' % input_line)
    with torch.no_grad():
        output = evaluate(lineToTensor(input_line))
        # Get top N categories
        topv, topi = output.topk(n_predictions, 1, True)
        predictions = []
        print('topv: ', topv)
        print('topi: ', topi)
        for i in range(n_predictions):
            value = topv[0][i].item()
            category_index = topi[0][i].item()
            print('(%.2f) %s' % (value, all_categories[category_index]))
            predictions.append([value, all_categories[category_index]])

predict('Dovesky')
predict('Jackson')
predict('Satoshi')            
> Dovesky
topv:  tensor([[-0.6312, -0.9500, -2.9799]])
topi:  tensor([[14,  2,  4]])
(-0.63) Russian
(-0.95) Czech
(-2.98) English

> Jackson
topv:  tensor([[-0.2220, -2.0125, -3.5026]])
topi:  tensor([[15,  4, 14]])
(-0.22) Scottish
(-2.01) English
(-3.50) Russian

> Satoshi
topv:  tensor([[-0.9452, -1.6715, -1.8808]])
topi:  tensor([[ 9,  0, 10]])
(-0.95) Italian
(-1.67) Arabic
(-1.88) Japanese

基于以上代码,被划分为几个小文件,表示不同的功能实现,分别是:

  • data.py: loads files
  • model.py: defines the RNN
  • train.py: runs training
  • predict.py: runs predict() with command line arguments
  • server.py: serve prediction as a json api with bottle.py

Run train.py to train and save the network.

Run predict.py with a name to view predictions

网址:https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值