- 博客(35)
- 资源 (3)
- 收藏
- 关注
原创 阅读:SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
这篇论文介绍了一个名为SegEarth-OV的训练自由型开放词汇分割(Open-Vocabulary Semantic Segmentation, OVSS)方法,专门针对遥感图像设计。该方法旨在解决遥感图像像素级解释中手动标注工作量大的问题,并通过引入开放词汇语义分割技术来提高分割精度和效率。论文详细阐述了SegEarth-OV的设计原理、实现方法以及在多个遥感数据集上的实验结果,展示了其在遥感图像分割任务中的有效性和优势。
2025-06-20 08:26:58
1157
原创 HRnet详解
例如,在早期的VGG网络中,随着网络深度的增加,特征图的分辨率不断降低,导致在进行像素级任务时,难以准确恢复出高分辨率的细节信息。这种融合方式使得网络能够将不同分辨率的特征优势结合起来,例如低分辨率特征中的语义信息可以增强高分辨率特征的语义理解能力,而高分辨率特征的细节信息可以补充低分辨率特征的细节缺失。为了充分利用不同分辨率分支中的特征信息,HRNet采用了独特的融合策略。它旨在同时保持高分辨率的特征表示,并有效地融合不同分辨率的特征,从而在保留空间细节的同时,也能捕捉到丰富的语义信息。
2025-06-10 11:48:14
898
原创 复现:Mamba-UNet:降水临近预报的创新解决方案
Mamba-UNet通过其创新的双分支Mamba融合模块、多尺度时空注意力模块和动态分位数加权损失函数,在降水临近预报领域取得了显著的性能提升。它不仅在多种降水场景下表现出色,尤其在预测强降水事件方面展现出了强大的能力。这一创新模型为降水临近预报提供了一种新的解决方案,有望在未来的研究和应用中发挥更大的作用,为应对气候变化带来的挑战提供有力支持。随着技术的不断发展和优化,我们期待Mamba-UNet在更广泛的气象预报任务中发挥更大的价值,为各行各业提供更精准、更可靠的降水预报服务。
2025-04-28 19:48:42
556
原创 复现:Residual channel prior-guided multi-scale progressive dehazing network with hybrid attention
复现代码见最后。
2025-04-19 09:30:00
2420
原创 RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing
S. Zhao, L. Zhang, Y. Shen and Y. Zhou, “RefineDNet: A Weakly Supervised Refinement Framework for Single Image Dehazing,” in IEEE Transactions on Image Processing, vol. 30, pp. 3391-3404, 2021, doi: 10.1109/TIP.2021.3060873.论文代码
2025-04-18 09:30:00
317
原创 复现:DASFNet,基于遥感的露天矿区目标检测
本文将详细解读论文《Lightweight Object Detection Network With Spatial-Channel Attention and Stair Fusion Structure for Remote Sensing Open-Pit》。这篇论文提出了一种新的轻量级目标检测网络DASFNet,用于遥感露天矿区的目标检测。该网络通过结合空间-通道注意力机制和阶梯融合结构,有效地提高了检测精度,同时降低了计算成本。
2025-04-17 09:00:00
295
原创 复现:MSLAN: A Two-Branch Multidirectional Spectral–Spatial LSTM Attention Network for Hyperspectral Im
【代码】复现:MSLAN: A Two-Branch Multidirectional Spectral–Spatial LSTM Attention Network for Hyperspectral Im。
2025-04-16 09:00:00
384
原创 基于 PyTorch 的 LSTM 实现降雨量预测
使用 PyTorch 的nn.LSTM定义 LSTM 层。模型输出最后一个时间步的隐藏状态,并通过全连接层预测降雨量。
2025-04-15 10:02:14
484
原创 复现:Automatic Extraction of Roads From Multisource Geospatial Data Using Fusion Attention Network
以下是基于论文《Automatic Extraction of Roads From Multisource Geospatial Data Using Fusion Attention Network and Regularization Algorithm》的核心代码实现框架。由于论文中涉及的模型和算法较为复杂,我会尽量简化代码结构,同时保留论文中的关键模块和流程。复现一下这个论文的代码,感兴趣的可以引用和阅读起来!如果需要更详细的实现或遇到问题,可以随时告诉我!
2025-04-15 08:33:25
297
原创 基于PyTorch的DETR(Detection Transformer)目标检测模型
以下是一个基于PyTorch的DETR(Detection Transformer)目标检测模型的实现代码。
2025-04-15 08:23:17
740
原创 脉冲耦合神经网络(PCNN):图像处理中的强大工具
import cv2"""初始化 PCNN 网络:param image: 输入图像:param kernel_size: 耦合权重矩阵的大小:param alpha: 输入信号衰减系数:param beta: 反馈信号衰减系数:param gamma: 脉冲增益"""self.t = 0"""迭代计算 PCNN 的输出:param max_iter: 最大迭代次数"""else:break"""获取 PCNN 的输出结果:return: 输出图像"""
2025-04-13 19:22:27
573
原创 复现:DRD-UNet,开启乳腺癌多类别语义分割新视野
在DRD-UNet中,扩张模块的引入使得网络能够更好地理解图像中的上下文信息,有助于改善对大尺度结构的分割效果。在DRD-UNet中,残差模块的加入不仅提高了网络的训练稳定性,还增强了模型对细节信息的捕捉能力。DRD-UNet是在标准U-Net架构的基础上进行改进的深度学习模型,其核心在于引入了Dilation、Residual和Dense(DRD)块,以增强模型对多类别乳腺癌组织的分割能力。其次,DRD-UNet的训练过程需要大量的计算资源和时间,这在一定程度上限制了其在实际应用中的推广。
2025-04-13 18:42:33
451
原创 论文阅读笔记:ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model
这些框架充分利用了Mamba架构的全局空间上下文学习能力和时空关系建模能力,在五个基准数据集上的实验结果表明,所提出的方法在性能上优于现有的CNN和Transformer方法。对于变化解码器,提出了三种时空关系建模机制,以充分利用Mamba架构的属性,实现多时相特征的时空交互,从而获得准确的变化信息。本文提出的基于Mamba架构的时空建模方法在BCD、SCD和BDA任务上均优于现有的时空关系建模方法,如基于FPN的拼接操作、基于3D卷积的TST方法、基于RNN的方法和基于Transformer的方法。
2025-04-11 19:52:50
1134
1
原创 复现:SonarNet: Hybrid CNN-Transformer-HOG Framework and Multifeature Fusion Mechanism for Forward-Look
return x# 解码器部分nn.ReLU(),nn.ReLU(),nn.ReLU(),# 全局特征提取# 局部特征提取# 全局-局部融合# HOG 特征提取# HOG 注意力机制# 解码器inputs = inputs[:, 1, :, :] # 取前景类别# 联合损失函数# 优化器。
2025-04-11 08:30:00
524
1
原创 复现:SCGC-Net: Spatial Context-Guided Calibration Network for Multisource RSI Landslides Detection
SCGC-Net通过创新的多尺度特征提取、上下文感知调制和渐进式特征校准策略,解决了滑坡检测中的多尺度特征提取和复杂环境适应性问题。实验结果证明了其在多个数据集上的优越性能和泛化能力,为滑坡灾害检测提供了一种高效、稳健的解决方案。
2025-04-10 15:08:12
309
13
原创 CDMamba: Incorporating Local Clues Into Mamba for Remote Sensing Image Binary Change Detection
CDMamba 通过引入局部特征增强和多时相特征交互,有效解决了现有方法在遥感图像变化检测中的局限性。实验结果表明,该模型在多个公共数据集上均取得了最佳性能,为遥感图像变化检测领域提供了新的研究思路和方法。代码。
2025-04-10 09:40:53
768
原创 Unet家族实现遥感影像建筑物提取
为实现遥感影像建筑物提取,提供不同的 U-Net 变体:标准 U-Net、ResUNet、Unet++等。标准 U-Net 是一种经典的卷积神经网络,用于分割任务。2. ResUNetResUNet 是一种结合了残差块的 U-Net,增强了特征提取能力。3. U-Net++U-Net++ 是 U-Net 的改进版本,通过引入多尺度的特征融合,增强了特征提取能力。4. U-Net+++U-Net+++ 是 U-Net++ 的进一步扩展,通过引入更多的跨层级连接,增强了特征融合能力。5. Att
2025-04-10 08:00:00
307
原创 看这里、看这里、看这里,注意力整理大全
通道注意力通过建模通道间的依赖关系,增强重要通道的特征响应。空间注意力关注特征图中不同位置的重要性,增强关键区域的响应。基于自注意力机制的长距离依赖建模,适用于大范围上下文捕捉。结合通道与空间注意力,或与其他机制(如多尺度)融合。
2025-04-09 22:35:20
251
原创 CNN+Transformer实现遥感影像建筑物分割
该框架结合了CNN的局部特征提取能力和Transformer的全局关系建模,适用于高分辨率遥感影像的建筑物分割任务。卷积核的滑动窗口机制天然适配图像数据的局部相关性,能高效捕捉建筑物边缘、纹理等细节特征(如屋顶边缘、窗户排列模式)通过权值共享保持特征的空间一致性,对建筑物不同位置的重复结构(如规则排列的住宅区)具有稳定识别能力。通过多级下采样逐步抽象特征,构建从边缘→纹理→语义的多尺度表达(如从砖瓦细节到整体建筑轮廓)通过注意力权重自动聚焦关键区域(如区分密集城区与孤立建筑物的特征重要性)
2025-04-09 18:03:33
709
原创 pytorch+Unet+建筑物提取
建筑物自动提取是遥感图像分析与计算机视觉领域的重要任务,在城市规划、灾害评估和地图更新中具有广泛应用价值。本项目基于PyTorch框架,采用U-Net语义分割网络实现高分辨率遥感影像中的建筑物精准提取。应用场景:实验表明,该方法在公开数据集上可实现超过85%的IoU精度,未来可通过引入Transformer注意力机制、多模态数据融合等方式进一步提升复杂场景下的提取鲁棒性。可根据具体需求补充以下内容:2. U-Net模型定义3. 训练循环4. 评估指标(IoU)5. 预测示例使用建议:
2025-04-08 16:50:23
683
2
原创 基于Mamba的遥感影像建筑物语义分割:原理、实践与代码详解
Mamba凭借其线性复杂度和全局建模能力,正在成为遥感影像分割的新引擎。通过本文的代码实践与模型解析,读者可快速上手基于Mamba的建筑物分割任务。Samba官方GitHub。
2025-04-07 08:53:21
404
原创 深度学习+遥感:2025最新土地利用分类资源大全(数据集/论文/代码)
近年来,深度学习在遥感影像土地利用分类领域取得了突破性进展,从传统的农田、森林识别,到复杂的城市功能区划分,AI正在重新定义我们对地表覆盖的认知。无论是科研还是工程应用,高质量数据集、前沿算法和开源工具都是成功的关键。本文精心整理了2024年最值得关注的土地利用分类资源,包括:✅ 10+个权威数据集(覆盖全球、多分辨率、多光谱/雷达)✅ 15+篇顶会论文(CNN/Transformer/自监督学习等SOTA方法)✅ 6大开源工具箱(PyTorch/Keras实现,即拿即用)
2025-04-07 08:00:45
608
原创 遥感影像去雾研究资源汇总
遥感影像在环境监测、灾害评估、军事侦察和城市规划等领域发挥着重要作用。然而,由于大气中的雾霾、云层和颗粒物散射,遥感图像常出现对比度下降、色彩失真和细节模糊等问题,严重影响后续的解译与分析。因此,遥感影像去雾技术成为计算机视觉和遥感领域的研究热点之一。近年来,随着深度学习的发展,遥感影像去雾方法从传统的基于物理模型(如暗通道先验、大气散射模型)逐渐转向数据驱动的深度学习方法,包括卷积神经网络(CNN)、Transformer以及最新的扩散模型。
2025-04-06 17:56:13
2067
原创 利用语义分割实现滑坡识别,看这一篇就够了
以下是一个基于PyTorch的滑坡识别分割完整实现,包含数据加载、训练、测试和评估模块。代码结构清晰,支持多GPU训练和指标计算。这个实现包含了滑坡分割任务的所有关键组件,可以根据需要调整模型架构、损失函数或数据增强策略。
2025-04-06 17:39:52
211
原创 遥感变化检测全攻略:从入门到发顶会,这篇就够了!
还在为找不到优质变化检测资源发愁?🔥来袭!✅(含超高分辨率)✅✅ ** 开源代码**(PyTorch/TF全都有)覆盖传统方法到Mamba架构,城市扩张、灾害评估全搞定!#遥感 #变化检测 #AI #科研利器。
2025-04-06 17:25:41
116
原创 智能解译城市进程:遥感影像建筑物提取研究全景与前沿进展(数据集及代码)
随着全球城市化进程的加速,高效、精准地监测城市建筑物分布对城市规划、灾害评估、人口估算及智慧城市建设具有重要意义。传统的人工测绘方法耗时费力,难以满足大范围、动态更新的需求。而遥感影像建筑物提取技术,借助深度学习与计算机视觉,能够自动化识别并提取建筑物轮廓,极大地提升了城市信息获取的效率和精度。首先,建筑物提取是遥感影像解译的核心任务之一。
2025-04-06 17:18:35
347
原创 DUPNet:基于密集连接与多尺度金字塔池化的遥感影像水体分割网络
📌 研究亮点《DUPNet: Water Body Segmentation with Dense Block and Multi-Scale Spatial Pyramid Pooling for Remote Sensing Images》 由 Zhiheng Liu 团队发表于 Remote Sensing(MDPI),提出了一种创新性深度学习框架,显著提升复杂场景下的水体提取精度!
2025-04-06 14:18:52
126
原创 深度学习赋能遥感影像水体提取:技术进展、数据集与前沿研究全解析
卷积神经网络(CNN)、Transformer、生成对抗网络(GAN)等先进模型能够自动学习水体的光谱、纹理和空间特征,显著提升了水体边界的识别精度,并能够适应复杂环境(如云层遮挡、阴影干扰、细小水体检测等)。此外,多源数据融合(光学+SAR)、时序分析、自监督学习等新兴技术的引入,使得水体监测更加智能化、实时化。传统的水体提取方法依赖人工解译或基于阈值的遥感影像处理技术(如NDWI指数),但这些方法往往受限于数据质量、环境噪声和人工干预,难以适应大范围、高动态的水体监测需求。
2025-04-06 13:58:47
1298
2
原创 遥感影像道路提取:解锁城市脉络的AI之眼
在智慧城市、灾害应急和自动驾驶等领域,高精度道路网络如同城市的“血管系统”,其自动化提取一直是遥感与AI交叉研究的核心挑战!传统方法受限于人工特征设计的瓶颈,而深度学习凭借卷积神经网络(CNN)、Transformer和图模型等利器,正在颠覆性地提升道路提取的精度与效率。本文将为你系统梳理:🔥 权威开源数据集(覆盖全球多分辨率场景)📜 顶会突破性论文(从U-Net到RoadFormer的技术演进)💻 即拿即用的代码(PyTorch/TensorFlow实战仓库)
2025-04-06 12:30:33
1060
原创 遥感影像分割阅读笔记
本文提出的 AFENet 通过自适应频率增强和选择性特征融合,在遥感图像语义分割中取得了显著的性能提升。AFENet 的设计不仅解决了现有方法在网络参数适应性和频率特征交互方面的不足,还为未来遥感图像分割研究提供了新的思路。论文源码。
2025-04-06 11:47:05
192
原创 遥感影像道路提取论文阅读笔记MSMDFF
A Multiscale and Multidirection Feature Fusion Network for Road Detection From Satellite Imagery
2025-04-04 23:04:04
574
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人