近年来,深度学习在遥感影像土地利用分类领域取得了突破性进展,从传统的农田、森林识别,到复杂的城市功能区划分,AI正在重新定义我们对地表覆盖的认知。无论是科研还是工程应用,高质量数据集、前沿算法和开源工具都是成功的关键。
本文精心整理了2024年最值得关注的土地利用分类资源,包括:
✅ 10+个权威数据集(覆盖全球、多分辨率、多光谱/雷达)
✅ 15+篇顶会论文(CNN/Transformer/自监督学习等SOTA方法)
✅ 6大开源工具箱(PyTorch/Keras实现,即拿即用)
✅ 技术趋势前瞻(多模态融合、时序分析、轻量化模型等)
无论你是刚入门的研究生、寻找数据的工程师,还是想复现最新算法的开发者,这份指南都能帮你快速定位核心资源,节省80%的文献调研时间!
👇 以下为详细分类表格(附下载链接)
数据集
数据集名称 | 简介 | 空间分辨率 | 光谱波段 | 覆盖区域 | 类别数 | 下载链接 |
---|---|---|---|---|---|---|
EuroSAT | 包含10类土地利用的Senti |