题目描述:
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
题目解答:
方法1:二分法
该二维数组实际时一个有序递增的数组,所以可以利用二分法确定是否存在目标数。
运行时间4ms,代码如下。
bool searchMatrix(int** matrix, int matrixRowSize, int matrixColSize, int target) {
int left = 0, right = matrixRowSize * matrixColSize - 1, mid = 0;
while(left <= right) {
mid = (left + right) / 2;
int t = matrix[mid / matrixColSize][mid % matrixColSize];
if(t == target)
return true;
else if(t > target)
right = mid - 1;
else
left = mid + 1;
}
return false;
}