数据结构实验:连通分量个数

题目描述

 在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
 

输入

 第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。

输出

 每行一个整数,连通分量个数。

示例输入

2
3 1
1 2
3 2
3 2
1 2

示例输出

2
1

提示



#include <iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef struct arcnode
{
    int adj;
}arcnode,adjmatrix[200][200];
typedef struct
{
    adjmatrix a;
    int vn;
    int an;
}MG;
int create(MG &g,int n,int m)//生成邻接矩阵;
{
    int i,j;
    int v1,v2;
    g.vn=n;
    g.an=m;
    for(i=1;i<=g.vn;i++)
        for(j=1;j<=g.vn;j++)
         g.a[i][j].adj=0;
    for(i=1;i<=g.an;i++)
    {
        scanf("%d%d",&v1,&v2);
        g.a[v1][v2].adj=1;
        g.a[v2][v1]=g.a[v1][v2];
    }
    return 1;
}
int v[110];//标记图的顶点是否访问过;
void dfs(MG &g,int i)//深度优先搜索;
{
    int j;//j在函数内部,不然不能回溯;
    v[i]=1;
    for(j=1;j<=g.vn;j++)
        if(g.a[i][j].adj==1&&!v[j])
    {
        dfs(g,j);
    }
}
int i,count;//记录连通分量个数;
void dfs1(MG &g)//统计连通分量的个数
{
    //int i;//若不在函数内部不会回溯;
    for(i=1;i<=g.vn;i++)
        if(!v[i])
    {
        count++;
        dfs(g,i);
    }
}
int main()
{
    int t;
    MG g;
    scanf("%d",&t);
    while(t--)
    {
        count=0;
        memset(v,0,sizeof(v));//标记数组初始化;
        int n,m;
        scanf("%d%d",&n,&m);
        create(g,n,m);
        dfs1(g);
        printf("%d\n",count);
    }
    return 0;
}



#include <cstdio>
#define MAX 2000
using namespace std;

int pre[MAX+1];

void Initialize(int n) {		// 初始化各结点的 pre 为自身
	for(int i=0; i<=n; ++i) {	// 相当于初始时每个结点为各自独立的集合
		pre[i] = i;
	}
}

int Find(int a) {				// 查找 a 所在集合的根结点 root
	int root = a;				// root 初始化为其本身
	while(pre[root] != root) {	// 当 root 的上级结点不是其本身
		root = pre[root];		// 令 root 为它的上级结点,继续查找
	}
	while(pre[a] != root) {		// 再次遍历,路径压缩
		int temp = pre[a];
		pre[a] = root;			// 沿途结点直接指向到 root
		a = temp;
	}

	return root;
}


void Join(int a, int b) {		// 将 a, b 结点所在的集合合并
	int root_a = Find(a);		// 查找 a 所在集合的根结点
	int root_b = Find(b);		// 查找 b 所在集合的根结点
	if(root_a != root_b) {		// 如果 a, b 不在同一集合,则合并
		if(root_a > root_b)		// 根结点下标大的集合并入下标小的集合
			pre[root_a] = root_b;
		else pre[root_b] = root_a;
	}
}

int Count(int n) {				// 统计不相交集合的个数
	int cnt = 0;				// 计数变量
	for(int i=1; i<=n; ++i) {
		int root = Find(i);		// 找到一个集合
		if(root) {				// 如果是第一次找到此集合
			cnt++;				// 计数
			pre[root] = 0;		// 此根节点置0,防止重复
		}
	}

	return cnt;
}

int main(int argc, char const *argv[]) {
	int t, n, m, u, v;
	scanf("%d", &t);
	while(t--) {
		scanf("%d %d", &n, &m);
		Initialize(n);
		while(m--) {
			scanf("%d %d", &u, &v);
			Join(u, v);
		}
		printf("%d\n", Count(n));
	}
	
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要判断一个连通分量个数,可以使用深度优先搜索(DFS)或广度优先搜索(BFS)算法。以下是使用DFS算法的示例代码: ```c #include <stdio.h> #include <stdbool.h> #define MAX_VERTICES 100 int graph[MAX_VERTICES][MAX_VERTICES]; // 邻接矩阵表示 bool visited[MAX_VERTICES]; // 记录节点是否被访问过 // DFS遍历中的一个连通分量 void dfs(int u, int n) { visited[u] = true; // 标记节点u已经被访问过 for (int v = 0; v < n; v++) { if (graph[u][v] && !visited[v]) { // 如果节点u和节点v之间有边,并且节点v未被访问过 dfs(v, n); // 递归访问节点v } } } // 计算连通分量个数 int count_connected_components(int n) { int count = 0; // 统计连通分量个数 for (int u = 0; u < n; u++) { if (!visited[u]) { // 如果节点u未被访问过,说明u所在的连通分量还未被统计 count++; // 连通分量个数加1 dfs(u, n); // 访问u所在的连通分量 } } return count; } int main() { int n, m; // n表示的节点个数,m表示的边数 scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); graph[u][v] = graph[v][u] = 1; // 在邻接矩阵中记录边 } printf("连通分量个数:%d\n", count_connected_components(n)); return 0; } ``` 这段代码首先读入的节点个数n和边数m,然后使用邻接矩阵表示,再通过DFS算法遍历中的每一个连通分量并计数,最后输出连通分量个数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值