收藏
707

迪杰斯特拉算法

  编辑
迪杰斯特拉算法是由荷兰计算机科学家 狄克斯特拉于1959 年提出的,因此又叫 狄克斯特拉算法。是从一个顶点到其余各顶点的 最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 [1]  
中文名
迪克斯特拉算法
外文名
Dijkstra's Algorithm
分    类
计算机算法
用    途
单源最短路径问题

定义

编辑
Dijkstra算法是典型的 算法Dijkstra算法是很有代表性的 算法。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用 OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 [2]  

原理

编辑
1.首先,引入一个辅助向量D,它的每个分量 D
   
表示当前所找到的
Dijkstra算法运行动画过程 Dijkstra算法运行动画过程
从起始点
   
(即源点
   
)到其它每个顶点
   
的长度。
例如,D[3] = 2表示从起始点到顶点3的路径相对最小长度为2。这里强调相对就是说在算法执行过程中D的值是在不断逼近最终结果但在过程中不一定就等于长度。 [1]  
2.D的初始状态为:若从
   
   
有弧(即从
   
   
存在连接边),则D
   
为弧上的权值(即为从
   
   
的边的权值);否则置D
   
为∞。
显然,长度为 D
   
= Min{ D |
   
∈V } 的路径就是从
   
出发到顶点
   
的长度最短的一条路径,此路径为(
   
)。
3.那么,下一条长度次短的是哪一条呢?也就是找到从源点
   
到下一个顶点的最短路径长度所对应的顶点,且这条最短路径长度仅次于从源点
   
到顶点
   
的最短路径长度。
假设该次短路径的终点是
   
,则可想而知,这条路径要么是(
   
),或者是(
   
)。它的长度或者是从
   
   
的弧上的权值,或者是D
   
加上从
   
   
的弧上的权值。
4.一般情况下,假设S为已求得的从源点
   
出发的最短路径长度的顶点的集合,则可证明:下一条次最短路径(设其终点为
   
)要么是弧(
   
),或者是从源点
   
出发的中间只经过S中的顶点而最后到达顶点
   
的路径。
因此,下一条长度次短的的最短路径长度必是D
   
= Min{ D
   
|
   
∈V-S },其中D
   
要么是弧(
   
)上的权值,或者是D
   
(
   
∈S)和弧(
   
,
   
)上的权值之和。
算法描述如下:
1)令arcs表示弧上的权值。若弧不存在,则置arcs为∞(在本程序中为MAXCOST)。S为已找到的从
   
出发的的终点的集合,初始状态为空集。那么,从
   
出发到图上其余各顶点
   
可能达到的长度的初值为D=arcs[Locate Vex(G,
   
)],
   
∈V;
2)选择
   
,使得D
   
=Min{ D |
   
∈V-S } ;
3)修改从
   
出发的到集合V-S中任一顶点
   
的最短路径长度。 [1]  

问题描述

编辑
无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短值。 [2]  

算法思想

编辑
按路径长度 递增次序产生算法:
把顶点集合V分成两组:
(1)S:已求出的顶点的集合(初始时只含有源点V0)
(2)V-S=T:尚未确定的顶点集合
将T中顶点按递增的次序加入到S中,保证:
(1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度
(2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的长度
T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
反证法可证)
求最短路径步骤
算法步骤如下:
G={V,E}
1. 初始时令 S={V0},T=V-S={其余顶点},T中顶点对应的距离值
若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值
若不存在<V0,Vi>,d(V0,Vi)为∞
2. 从T中选取一个与S中顶点有关联边且权值最小的顶点W,加入到S中
3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值
重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

算法实现

编辑

pascal语言

下面是该算法的Pascal程序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
type
bool= array [ 1..10 ]ofboolean;
arr= array [ 0..10 ]ofinteger;
var
a: array [ 1..10 , 1..10 ]ofinteger; //存储图的邻接数组,无边为10000
c,d,e:arr; //c为最短路径数值,d为各点前趋,
t:bool; //e:路径,t为辅助数组
i,j,n,m: integer ;
inf,outf:text;
procedureinit; //不同题目邻接数组建立方式不一样
begin
assign(inf,inputfile);
assign(outf,outputfile);
reset(inf);
rewrite(outf);
read(inf,n);
fori:=1tondo
begin
forj:=1tondo
begin
read(inf,a[i,j]);
ifa[i,j]=0then
a[i,j]:= 10000 ;
end ;
end ;
end ;
proceduredijkstra(qi: integer ;t:bool;varc {,d} :arr);
//qi起点,{}中为求路径部分,不需求路径时可以不要
var
i,j,k,min: integer ;