非线性回归

本文介绍了非线性回归中的概率概念,包括概率定义、范围及计算方法。接着详细讨论了Logistic Regression,阐述了其基本模型、预测函数、Cost函数以及梯度下降法。同时,提到了皮尔逊相关系数、R平方值及其在回归分析中的作用,探讨了R平方的局限性和修正方法。
摘要由CSDN通过智能技术生成
1. 概率:

     1.1 定义   概率(P)robability: 对一件事情发生的可能性的衡量
     1.2 范围   0 <= P <= 1
     1.3 计算方法: 
          1.3.1 根据个人置信
          1.3.2 根据历史数据
          1.3.3 根据模拟数据
     1.4 条件概率:
                            
2. Logistic Regression (逻辑回归)

     2.1 例子
 2.2 基本模型
         测试数据为X(x0,x1,x2···xn)
         要学习的参数为: Θ(θ0,θ1,θ2,···θn)
          
     
          向量表示:
          
     

          
        处理二值数据,引入Sigmoid函数时曲线平滑化 
          
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值