- 博客(901)
- 资源 (649)
- 收藏
- 关注
原创 FORCE_VERIFYING_SIGNATURE=false
摘要:Dify 容器内部修改 .env 文件无效,配置通过 Docker Compose 环境变量注入。正确方式是在宿主机修改 docker/.env 文件添加 FORCE_VERIFYING_SIGNATURE=false。若需临时调试,可在容器内执行 export 命令并重启服务,但重启容器后会失效。执行 docker compose down 和 up -d 不会丢失数据,因数据存储在持久化 Volume 中。避免使用 -v 参数以防数据删除。建议通过宿主机修改配置确保永久生效。
2025-12-03 20:10:25
305
原创 用户意图分类
本文提出了一套完整的代码开发意图分类体系,将用户指令划分为13个大类(如代码操作、代码分析、文件操作等)和35个子类。每个子类对应特定的处理工具或代理(Agent),如代码操作使用AST/sandbox代理,代码搜索采用精确匹配或语义检索,测试验证调用sandbox代理等。该分类体系通过模块化的代理分工,实现了从用户意图识别到具体工具调用的全流程映射,为智能编程助手提供了清晰的任务分解框架。
2025-11-27 11:01:56
930
原创 让cursor改一个逻辑,比如给Email增加一个验证,是如何定位抽取,上下游依赖关系,以及调用关系,来判断需要哪些地方需要修改的?
Cursor修改功能的原理:通过意图识别确定修改目标,利用代码搜索和AST分析定位相关代码,构建调用图和数据流分析依赖关系,生成安全修改计划(To-Do List),在沙盒测试后执行修改。整个过程结合LLM理解、静态分析和安全验证,确保修改不破坏现有功能。
2025-11-27 10:55:32
351
原创 Cursor Agent 的核心执行调度逻辑
Cursor Agent采用有限状态机架构,将任务分解为可执行步骤。其核心流程包括:1)意图检测判断任务类型;2)工具选择根据任务粒度匹配read/explored/grepped等操作;3)生成To-Do List计划,每个步骤标记为可执行单元;4)执行循环通过打勾机制(checked标记)控制流程流转,支持手动/自动触发;5)动态调整计划,根据执行结果更新后续步骤。整个过程结合AST/sandbox保证安全性,实现从意图识别到安全执行的完整闭环。
2025-11-27 10:27:46
386
原创 Python AST 可视化工具(支持 Kotlin & Java) 的完整代码
本文介绍了一个基于Python的AST可视化工具,支持Kotlin和Java代码。该工具使用tree-sitter进行语法解析,graphviz生成可视化树状图。核心功能包括:加载不同语言的解析器、递归遍历AST节点、生成PNG格式的语法树图像。用户只需安装tree_sitter、tree_sitter_languages和graphviz三个Python包,以及系统级的graphviz软件包即可使用。工具提供示例代码演示了如何为Kotlin和Java代码生成AST图,并输出为png文件。文章还提出了可能的
2025-11-27 09:56:43
256
原创 Cursor 什么时候使用 Codebase(Explored 搜索)
摘要:Cursor在代码相关指令时才会触发codebase搜索,通过动态调整top-k(3-20+)和相似度阈值(0.18-0.55)来优化检索效果。其核心机制包括:1)基于语义向量搜索获取候选文件;2)通过AST解析和引用图分析文件结构;3)结合任务复杂度动态调整检索范围。Cursor利用AST确保代码修改的结构合法性,使其比普通AI工具更稳定可靠。整个过程融合了语义搜索、代码结构分析和智能参数调节技术。
2025-11-27 09:49:30
912
原创 Cursor 的 Agent 是如何工作的?
Cursor Agent是一个自主代码编辑系统,结合LLM、文件系统访问和AST工具,实现安全高效的代码修改。其核心技术包括:1)意图识别判断用户需求;2)LLM生成可执行的编辑计划;3)基于AST的差分补丁系统确保修改安全。完整流程从用户请求到多轮计划执行,相比普通ChatGPT具有工程级编辑能力,支持多文件修改和精确代码定位。系统核心组件包括代码索引、意图分类、提示词调度等,用户可基于类似架构自行搭建简化版Code Agent。
2025-11-27 09:47:43
1060
原创 adb 与pad 交互方法
这段Python代码演示了通过ADB命令控制Android设备触屏操作。代码定义了一个tap()函数,通过adb shell input tap命令模拟点击屏幕指定坐标。示例中包含了多个坐标点的点击位置,如上下左右方向键和夹子按钮的坐标。代码需要ADB调试环境,有线直接连接,无线需先启用TCP模式(adb tcpip 5555)。主要适用于自动化测试或远程控制Android设备场景,通过简单的坐标点击实现基础操作。
2025-08-03 21:46:05
236
原创 PHP 5.5 Action Management with Parameters (English Version)
This PHP 5.5 script provides a simple action management system using URL parameters and session storage. It supports three operations: storing actions via ?action=value, checking status with ?cmd=status, and deleting actions with ?cmd=delete. The script sa
2025-07-31 22:24:16
370
原创 ADB+Python控制(有线/无线) Scrcpy+按键映射(推荐)
电脑通过键盘控制安卓平板屏幕点击方案 核心方案 ADB+Python控制(有线/无线) 需要开启开发者模式和USB调试 使用Python监听键盘并发送ADB点击指令 示例代码实现WASD键控制点击坐标 Scrcpy+按键映射(推荐) 安装开源的Scrcpy工具 创建JSON配置文件映射键盘到点击坐标 延迟低至30ms,适合游戏控制 Automate+HTTP Server 安卓端安装Automate应用搭建HTTP服务 电脑端发送HTTP请求触发点击操作 关键步骤 获取屏幕坐标(开发者选项或ADB命令) 处
2025-07-28 20:25:35
2220
原创 使用PaddleOCR识别数学试卷
PaddleOCR可用于数学试卷识别,支持中英文文本和表格内容。安装简单,需预处理图像提高识别率。对于复杂公式,建议结合Mathpix等专业工具或进行后处理转换。可批量处理文件,通过自定义字典提升数学术语识别准确率。但手写公式和复杂符号识别仍具挑战性,可能需要结合多种OCR工具优化效果。
2025-07-15 10:12:11
528
原创 AI 识别卷纸思路
本文介绍了使用Python处理数学、物理、化学等复杂试卷OCR识别的综合解决方案。针对公式识别、手写体识别、复杂布局等难点,提出多阶段处理流程:图像预处理(OpenCV)、布局分析(PaddleOCR/unstructured.io)、分区域识别(PaddleOCR处理文本,pix2tex识别公式,EasyOCR处理手写体)。文章详细对比了各工具的优缺点,并提供了三个代码示例(基础OCR、区域识别、公式识别),指导读者从简单到复杂逐步实现。最终推荐开源组合方案为:OpenCV+PaddleOCR+unstr
2025-07-14 17:49:19
850
原创 一个系统有若干个API,每个API,都有若干个属性,如 入参 出参 逻辑 错误信息 背景,以及使用这个API的客户,和客户的使用场景, 根据以上信息建立一个知识图谱 比如有 login API
基于您描述的系统API和相关信息,我可以设计一个全面的知识图谱模型。
2025-06-08 17:50:53
543
原创 Nginx sse for mcp
本文提供了Nginx服务器的配置示例,涵盖了基本设置和模块加载。配置文件中定义了工作进程、错误日志、PID文件路径,并加载了动态模块。事件块中设置了工作连接数,HTTP块中定义了日志格式、访问日志路径、文件传输优化、超时设置等。此外,配置文件还包含了多个服务器块,定义了不同路径的代理规则,如/metrics、/api、/mcp等,并设置了相应的代理头信息。最后,配置文件中还包含了错误页面的处理规则。更多配置信息可参考官方英文和俄文文档。
2025-05-22 19:28:55
699
原创 基于供热企业业务梳理的智能化赋能方案
通过此框架,可实现供热企业从"经验驱动"向"数据驱动"的转型,预计综合效率提升15-20%(麦肯锡行业调研数据)。需特别注意数据治理(ISO38505标准)与组织变革管理的同步推进。
2025-05-07 19:16:10
882
原创 Java 实现socket VAD通讯客户端
这个Java客户端实现了与Python服务端的完整交互流程,支持实时音频处理和标点恢复功能。根据实际需求可以扩展更多功能如:音频压缩、自适应VAD阈值、多语言支持等。
2025-05-02 10:50:48
1076
原创 Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务
Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务。通过以上步骤,您可以在本地高效部署Paraformer模型。如需进一步定制(如微调训练),需准备数据集并参考FunASR的文档。Paraformer的官方实现通常通过。通过API提交音频。
2025-05-02 05:48:12
2466
原创 Paraformer 的详细安装与部署指南,涵盖本地环境、云端及嵌入式设备的部署步骤
通过以上步骤,可快速完成Paraformer的部署。如需生产级服务,建议参考官方文档配置。
2025-05-02 05:43:32
2212
原创 服务器频繁重启日志分析与诊断
这表示系统在4月29日17:54启动,运行了约20小时31分钟后,于次日14:26结束(可能是崩溃或主动重启)。如果你能提供更多日志信息(特别是崩溃前的错误信息),我可以帮你更准确地诊断问题。从你提供的日志来看,系统确实经历了多次重启。
2025-04-30 18:52:57
861
原创 DeepSeek在供热行业中的应用
DeepSeek 是一种基于深度学习和自然语言处理(NLP)技术的先进人工智能平台,旨在通过高效的算法和海量数据训练,提升供暖行业业务的智能化水平。该技术通过多层次的神经网络模型,能够自动提取、分析和处理复杂的供暖数据,从而为供暖企业提供精准的业务决策支持。DeepSeek 的核心优势在于其高精度的预测能力和强大的自适应学习机制,能够根据市场变化和用户需求动态调整模型参数,确保其在供暖领域的高效应用。
2025-03-11 14:05:04
1479
1
原创 PID 控制的通俗理解
PID 控制就像一个“智能调节器”,通过比例、积分、微分三个部分的配合,让系统的输出值稳定在目标值。在 PLC 中,PID 控制可以用于温度、压力、流量、速度等各种控制场景。通过调整 PID 参数(比例、积分、微分的作用强度),可以让系统响应更快、更稳定。希望这个解释能帮助你理解 PID 控制!如果还有疑问,可以继续问我!
2025-03-09 16:46:30
945
原创 使用 TOPSIS 进行决策
价格和投诉率都是成本型准则(越小越好)。权重分配为价格 40%,投诉率 60%。weights = np.array([0.4, 0.6]) # 价格、投诉率的权重criteria_types = np.array([-1, -1]) # -1 表示成本型准则通过 TOPSIS 方法,我们可以科学地权衡价格和投诉率,选择最适合企业长期发展的供热策略。
2025-03-09 16:34:30
414
原创 方差的原理以及应用场景
方差是衡量数据波动性的重要指标,其应用广泛,能够帮助我们理解数据的变异程度、评估风险、以及在不同场景下做出更为科学的决策。下面是一个实际例子,说明方差的计算和应用。
2024-08-20 21:43:50
3317
原创 算法解决收益最大化的问题,比如一个楼房有三种建筑方案
能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。市场调研后发现有市场接受度会分高低1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万。
2024-08-20 21:36:45
985
原创 利用贝叶斯和决策树 来进行医疗诊断的
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。:我们使用决策树模型来进一步细化和验证预测结果。:根据患者输入的症状,依次使用贝叶斯分类器和决策树来进行病症预测。000。
2024-08-20 20:57:00
1007
1
原创 word2vec,是如何利用神经网络把一个onehot编码压缩成向量
Word2Vec 使用神经网络作为其核心组件来学习单词的向量表示。下面将介绍 Word2Vec 中的两种主要架构:CBOW(Continuous Bag-of-Words)和 Skip-Gram,并使用 CBOW 作为示例来说明这个过程。
2024-08-12 17:58:08
695
原创 MLP 多次感知器如何使用 二分类和多分类示例
多层感知器(MLP)是神经网络的一种基本类型,通常用于分类或回归任务。下面是一个简单的 Python 示例,演示如何使用多层感知器进行分类任务。我们将使用库中的来创建一个多层感知器,并在鸢尾花数据集上进行训练和测试。
2024-08-09 13:20:02
1053
原创 QKV 归一化步及多层感知机 MLP
在 Transformer 模型中,QKV 输出的值通常会经过一个归一化步骤,随后通过一个多层感知机(MLP)来进一步处理。
2024-08-07 21:12:18
680
1
原创 Transformer 模型中的 QKV 机制是如何运作的
当然可以。让我们通过一个简化的例子来展示 Transformer 模型中的 QKV 机制是如何运作的。假设我们正在处理一个包含两个词“你好”和“世界”的序列,并且为了简单起见,我们使用一个非常小的嵌入维度来说明这个概念。
2024-08-07 20:54:37
944
原创 Transformer Q K V
Transformer 模型中的 QKV 分别代表 Query(查询)、Key(键)和 Value(值),这是 Transformer 模型中自注意力机制(Self-Attention Mechanism)的核心组成部分。
2024-08-07 20:52:00
1994
原创 两个向量的余弦相似度如何计算
两个向量的余弦相似度是通过测量两个向量在方向上的相似性来计算的。\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]- \( A \cdot B \) 表示向量 A 和向量 B 的点积(内积)。- \( \|A\| \) 表示向量 A 的欧几里得范数(即长度)。- \( \|B\| \) 表示向量 B 的欧几里得范数。
2024-08-06 21:21:31
1487
原创 Softmax函数
在多分类问题中,每个类别都会得到一个在0到1之间的概率值,这些概率值的总和为1。在这个例子中,`softmax` 函数首先计算输入向量 `z` 中每个元素的指数,然后计算所有指数的和,最后用每个元素的指数除以这个和,得到每个类别的概率。使用 `stable_softmax` 函数代替之前的 `softmax` 函数可以避免在处理非常大数值时可能出现的数值不稳定问题。其中,\( e^{z_i} \) 是 \( z_i \) 的指数,分母是所有指数的和,确保了所有概率之和为1。# 计算所有指数的总和。
2024-08-06 21:06:26
758
原创 微软AI系列 C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度
在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算
2024-03-19 15:55:40
846
1
原创 微软AI系列 如何使用微软及相关产品来实现 文字转语音
通过Speech SDK,你可以访问Azure的语音服务,并使用其中的语音合成功能进行AI配音。:Azure还提供了自定义语音服务,可以让用户创建自己的语音合成模型,从而实现更加个性化和自然的语音合成。你可以通过Azure平台上的自定义语音服务来训练自己的模型,然后将其集成到你的应用程序中。:Microsoft也提供了直接使用的文本转语音API,你可以通过调用这些API来实现文本到语音的转换。记得在实际使用时,遵循 Azure 认知服务的使用条款,并注意保护你的密钥和数据。在这个示例中,你需要替换。
2024-03-14 08:18:36
1314
Windows Server 2008 + tomcat 配置使用SSL.docx
2018-02-23
weUI 入门教程:http://blog.csdn.net/libin_1/article/details/50734266
2018-05-17
使用springboot集成jseesite
2018-03-28
docker离线安装 linux
2017-12-08
TensorFlowSharp-master
2018-01-02
Docker 快速安装caffe步骤
2017-12-21
EM抛硬币算法
2017-12-20
PostMan工具离线安装
2018-04-17
C# idx1-ubyte idx3-ubyte转图片 文字 浏览器
2018-01-04
DsoFramer_KB311765_x86.exe 微软官方office控件,其中含源码,C、C++、Web 三种demo
2018-04-13
快速安装caffe步骤
2017-12-21
tensorflow 摄像头调用 Inception v1分类 vs2017 C#
2018-01-02
Netica贝叶斯
2017-12-14
Mysql安装Linux
2017-12-13
ID3 算法 决策树使用的算法与阿里巴巴Java开发手册(终极版)
2017-12-15
加特林压力测试代码示例 gatling stress test samples
2022-05-24
最新百度地图API Javascript V2.0 离线版本。 完全脱离百度在线地图, 有比较完善的示例Demo, 默认带有全国8级地图
2018-11-13
eureka-server+gateway-service+user-service+zipkin-server
2018-07-18
Face++ C# Demo实现web API 人脸比对,识别等接口
2019-01-05
vue 一套前端框架
2018-05-31
Fiddler4 以及证书https
2018-11-07
SKU 相关代码及知识
2019-01-23
ELK( ElasticSearch、Logstash和Kiabana)
2018-07-20
LSB隐写术 C#源代码
2021-05-17
.net2.0 Mysql
2018-10-24
Spring Boot 拦截器+kibana 配置.zip
2019-09-04
ELK6.2.4搭建
2018-11-15
H5-Kline-master.zip
2020-03-19
FiddlerCertMaker
2018-11-01
de4dot.zip
2020-06-01
使用SpringBoot整合jersey 实现Restful web service.同时整合springmvc。
2020-02-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅