- 博客(888)
- 资源 (649)
- 收藏
- 关注
原创 Nginx sse for mcp
本文提供了Nginx服务器的配置示例,涵盖了基本设置和模块加载。配置文件中定义了工作进程、错误日志、PID文件路径,并加载了动态模块。事件块中设置了工作连接数,HTTP块中定义了日志格式、访问日志路径、文件传输优化、超时设置等。此外,配置文件还包含了多个服务器块,定义了不同路径的代理规则,如/metrics、/api、/mcp等,并设置了相应的代理头信息。最后,配置文件中还包含了错误页面的处理规则。更多配置信息可参考官方英文和俄文文档。
2025-05-22 19:28:55
97
原创 基于供热企业业务梳理的智能化赋能方案
通过此框架,可实现供热企业从"经验驱动"向"数据驱动"的转型,预计综合效率提升15-20%(麦肯锡行业调研数据)。需特别注意数据治理(ISO38505标准)与组织变革管理的同步推进。
2025-05-07 19:16:10
786
原创 Java 实现socket VAD通讯客户端
这个Java客户端实现了与Python服务端的完整交互流程,支持实时音频处理和标点恢复功能。根据实际需求可以扩展更多功能如:音频压缩、自适应VAD阈值、多语言支持等。
2025-05-02 10:50:48
870
原创 Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务
Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务。通过以上步骤,您可以在本地高效部署Paraformer模型。如需进一步定制(如微调训练),需准备数据集并参考FunASR的文档。Paraformer的官方实现通常通过。通过API提交音频。
2025-05-02 05:48:12
1145
原创 Paraformer 的详细安装与部署指南,涵盖本地环境、云端及嵌入式设备的部署步骤
通过以上步骤,可快速完成Paraformer的部署。如需生产级服务,建议参考官方文档配置。
2025-05-02 05:43:32
564
原创 服务器频繁重启日志分析与诊断
这表示系统在4月29日17:54启动,运行了约20小时31分钟后,于次日14:26结束(可能是崩溃或主动重启)。如果你能提供更多日志信息(特别是崩溃前的错误信息),我可以帮你更准确地诊断问题。从你提供的日志来看,系统确实经历了多次重启。
2025-04-30 18:52:57
433
原创 DeepSeek在供热行业中的应用
DeepSeek 是一种基于深度学习和自然语言处理(NLP)技术的先进人工智能平台,旨在通过高效的算法和海量数据训练,提升供暖行业业务的智能化水平。该技术通过多层次的神经网络模型,能够自动提取、分析和处理复杂的供暖数据,从而为供暖企业提供精准的业务决策支持。DeepSeek 的核心优势在于其高精度的预测能力和强大的自适应学习机制,能够根据市场变化和用户需求动态调整模型参数,确保其在供暖领域的高效应用。
2025-03-11 14:05:04
1168
1
原创 PID 控制的通俗理解
PID 控制就像一个“智能调节器”,通过比例、积分、微分三个部分的配合,让系统的输出值稳定在目标值。在 PLC 中,PID 控制可以用于温度、压力、流量、速度等各种控制场景。通过调整 PID 参数(比例、积分、微分的作用强度),可以让系统响应更快、更稳定。希望这个解释能帮助你理解 PID 控制!如果还有疑问,可以继续问我!
2025-03-09 16:46:30
712
原创 使用 TOPSIS 进行决策
价格和投诉率都是成本型准则(越小越好)。权重分配为价格 40%,投诉率 60%。weights = np.array([0.4, 0.6]) # 价格、投诉率的权重criteria_types = np.array([-1, -1]) # -1 表示成本型准则通过 TOPSIS 方法,我们可以科学地权衡价格和投诉率,选择最适合企业长期发展的供热策略。
2025-03-09 16:34:30
329
原创 方差的原理以及应用场景
方差是衡量数据波动性的重要指标,其应用广泛,能够帮助我们理解数据的变异程度、评估风险、以及在不同场景下做出更为科学的决策。下面是一个实际例子,说明方差的计算和应用。
2024-08-20 21:43:50
1839
原创 算法解决收益最大化的问题,比如一个楼房有三种建筑方案
能否用某个算法解决收益最大化的问题,比如一个楼房有三种建筑方案,1 大型 18 层 90个单元,2 中型 12层 60个单元, 3 小型 6层 30个单元,每个单元的价格成本是30万元到60万元,这个取决于当年用工和材料成本的浮动。市场调研后发现有市场接受度会分高低1 大型 市场接受度高时候能赚2000万 接受度低时候能赔900万2 中型 市场接受度高时候能赚1400万 接受度低时候能赚500万3 小型 市场接受度高时候能赚800万 接受度低时候能赚700万。
2024-08-20 21:36:45
911
原创 利用贝叶斯和决策树 来进行医疗诊断的
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。:我们使用决策树模型来进一步细化和验证预测结果。:根据患者输入的症状,依次使用贝叶斯分类器和决策树来进行病症预测。000。
2024-08-20 20:57:00
791
1
原创 word2vec,是如何利用神经网络把一个onehot编码压缩成向量
Word2Vec 使用神经网络作为其核心组件来学习单词的向量表示。下面将介绍 Word2Vec 中的两种主要架构:CBOW(Continuous Bag-of-Words)和 Skip-Gram,并使用 CBOW 作为示例来说明这个过程。
2024-08-12 17:58:08
589
原创 MLP 多次感知器如何使用 二分类和多分类示例
多层感知器(MLP)是神经网络的一种基本类型,通常用于分类或回归任务。下面是一个简单的 Python 示例,演示如何使用多层感知器进行分类任务。我们将使用库中的来创建一个多层感知器,并在鸢尾花数据集上进行训练和测试。
2024-08-09 13:20:02
739
原创 QKV 归一化步及多层感知机 MLP
在 Transformer 模型中,QKV 输出的值通常会经过一个归一化步骤,随后通过一个多层感知机(MLP)来进一步处理。
2024-08-07 21:12:18
530
1
原创 Transformer 模型中的 QKV 机制是如何运作的
当然可以。让我们通过一个简化的例子来展示 Transformer 模型中的 QKV 机制是如何运作的。假设我们正在处理一个包含两个词“你好”和“世界”的序列,并且为了简单起见,我们使用一个非常小的嵌入维度来说明这个概念。
2024-08-07 20:54:37
584
原创 Transformer Q K V
Transformer 模型中的 QKV 分别代表 Query(查询)、Key(键)和 Value(值),这是 Transformer 模型中自注意力机制(Self-Attention Mechanism)的核心组成部分。
2024-08-07 20:52:00
1641
原创 两个向量的余弦相似度如何计算
两个向量的余弦相似度是通过测量两个向量在方向上的相似性来计算的。\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]\[ \text{余弦相似度}(A, B) = \frac{A \cdot B}{\|A\| \|B\|} \]- \( A \cdot B \) 表示向量 A 和向量 B 的点积(内积)。- \( \|A\| \) 表示向量 A 的欧几里得范数(即长度)。- \( \|B\| \) 表示向量 B 的欧几里得范数。
2024-08-06 21:21:31
1254
原创 Softmax函数
在多分类问题中,每个类别都会得到一个在0到1之间的概率值,这些概率值的总和为1。在这个例子中,`softmax` 函数首先计算输入向量 `z` 中每个元素的指数,然后计算所有指数的和,最后用每个元素的指数除以这个和,得到每个类别的概率。使用 `stable_softmax` 函数代替之前的 `softmax` 函数可以避免在处理非常大数值时可能出现的数值不稳定问题。其中,\( e^{z_i} \) 是 \( z_i \) 的指数,分母是所有指数的和,确保了所有概率之和为1。# 计算所有指数的总和。
2024-08-06 21:06:26
535
原创 微软AI系列 C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度
在C#中实现相似度计算涉及到加载图像、使用预训练的模型提取特征以及计算相似度。你可以使用.NET中的深度学习库如TensorFlow.NET来加载预训练模型,提取特征,并进行相似度计算
2024-03-19 15:55:40
752
1
原创 微软AI系列 如何使用微软及相关产品来实现 文字转语音
通过Speech SDK,你可以访问Azure的语音服务,并使用其中的语音合成功能进行AI配音。:Azure还提供了自定义语音服务,可以让用户创建自己的语音合成模型,从而实现更加个性化和自然的语音合成。你可以通过Azure平台上的自定义语音服务来训练自己的模型,然后将其集成到你的应用程序中。:Microsoft也提供了直接使用的文本转语音API,你可以通过调用这些API来实现文本到语音的转换。记得在实际使用时,遵循 Azure 认知服务的使用条款,并注意保护你的密钥和数据。在这个示例中,你需要替换。
2024-03-14 08:18:36
1096
原创 JS调用MetaMask调用启动转账
1 、代码必须跑在nginx下,否则没有eth对象。2、可以下载ganache来单跑个私服,然后安装谷歌metamask浏览器插件来实验3、账户1:0xFA387e41FA471172cC729167EBD4862aA7020D91 账户2:0x818DF62ff0bE3B28AE8be25e2e848E10138018B74、1000000000000000 为金额
2022-11-16 23:40:29
1669
1
转载 Docker安装Confluence
参考链接: https://my.oschina.net/u/2289161/blog/1648587 https://hub.docker.com/r/cptactionhank/atlassian-confluence/dockerfile https://my.oschina.net/u/2289161/blog/1647061 https://my.oschina.net/u/2289161/blog/838218 https://hub.docker.com/r/cptactionhan
2022-07-16 20:11:00
2192
1
转载 Python cv2 图片的几何变形
import cv2 as cvimport numpy as npfrom matplotlib import pyplot as pltimg = cv.imread('sudoku.png')rows,cols,ch = img.shapepts1 = np.float32([[56,65], [368,52], [28,387], [389,390]])pts2 = np.float32([[0,0], [300,0], [0,300], [300,300]])M ...
2021-11-19 23:48:28
979
1
转载 windows docker 空出C盘 迁移到其他盘
下面是操作方法: 首先关闭docker 关闭所有发行版:wsl --shutdown 将docker-desktop-data导出到D:\SoftwareData\wsl\docker-desktop-data\docker-desktop-data.tar(注意,原有的docker images不会一起导出)wsl --export docker-desktop-data D:\SoftwareData\wsl\docker-desktop-data\docker-desktop
2021-11-13 22:01:21
1084
转载 Docker kafka
阅读目录一、下载镜像 二、先启动zookeeper 三、启动kafka 四、创建一个topic(使用代码次步可省略) 五、kafka设置分区数量 六、python代码回到顶部一、下载镜像docker pull wurstmeister/zookeeperdocker pull wurstmeister/kafka回到顶部二、先启动zookeeper#单机方式docker run -d --name zookeeper -p 2181:2181 -t wurst
2021-10-17 22:22:20
473
转载 openshift for linux
安装openshift1、下载地址:https://github.com/openshift/origin/releases3.11下载:https://github.com/openshift/origin/releases/tag/v3.11.02、上传到/opt目录mv openshift-origin-server-v3.11.0-0cbc58b-linux-64bit.tar.gz /opt1.3、解压cd /opttar -zxvf openshift-origi...
2021-10-17 20:25:30
405
原创 K8S常用命令
https://kubernetes.io/docs/reference/(cmd rest web) apiserver 调用方法->etcd 数据库 -> schedule 决策用哪个Nodes资源 -> controller 最终一致性-ns--nodes---deploy----replicaset-----podskubectl get nodes 获取物理机节点kubectl get ns 获取命名空间kubectl get pods 获取pod资源 默认.
2021-09-18 13:31:51
602
原创 Java lamda表达式快速分组
public class ProductDto { private long month; private String cate; private double count;}Map<String,List<ProductDto>> categoryMap = alllist.getValue().stream().collect(Collectors.groupingBy(ProductDto::getCate));
2021-08-24 15:00:19
892
转载 Spark Windows
本文主要是讲解Spark在Windows环境是如何搭建的一、JDK的安装1、1 下载JDK 首先需要安装JDK,并且将环境变量配置好,如果已经安装了的老司机可以忽略。JDK(全称是JavaTM Platform Standard Edition Development Kit)的安装,去Oracle官网下载,下载地址是Java SE Downloads。 上图中两个用红色标记的地方都是可以点击的,点击进去之后可以看到这个最新版本的一些更为详细的信息,如下图所示: 下载完.
2021-08-07 16:52:01
346
转载 fastjson反序列化漏洞原理及利用
重要漏洞利用poc及版本我是从github上的参考中直接copy的exp,这个类就是要注入的类import java.lang.Runtime; import java.lang.Process; public class Exploit { public Exploit() { try{ // 要执行的命令 String commands = "calc.exe"; Process pc = Runtime.getRuntime().exec(commands); pc.waitFor()
2021-07-01 13:55:49
3542
1
转载 利用 Docker 搭建单机的 Cloudera CDH 以及使用实践
利用 Docker 搭建单机的 Cloudera CDH 以及使用实践想用 CDH 大礼包,于是先在 Mac 上和 Centos7.4 上分别搞个了单机的测试用。其实操作的流和使用到的命令差不多就一并说了:首先前往官方下载包:https://www.cloudera.com/downloads/quickstart_vms/5-13.html如果使用 mac 并且安装 docker。 我们可以很轻松的使用 kitematic 来获取最新版本的 cloudera docker 镜像。只需要搜
2021-05-21 10:28:25
1830
原创 zookeeper+kafka+logstash+elasticsearc+kibana
研究背景1、之所以选用kafka是因为量起来的话单台logstash的抗压能力比较差2、为了解决整个链路查询的问题,多个Feign传层的话,可以按照一个ID进行穿层,所以采用logback的MDC进行对唯一标识存储并且在Feign的调用链放在Header里,这里命名为TID下载地址:ZK+Kafkahttps://mirrors.bfsu.edu.cn/apache/kafka/2.7.0/kafka_2.13-2.7.0.tgzhttps://mirrors.bfsu.edu.cn
2021-05-14 21:06:32
521
转载 logstash windows
最新在研究elastic stack (elk) :logstash 安装,下载最新版本的logstash:点击打开链接解压到磁盘根目录下:在logstash>bin1、目录下创建:logstash.conf2、输入内容:input {stdin{}}output {stdout{}}3、ok 了,启动成功...
2021-05-12 11:09:15
298
加特林压力测试代码示例 gatling stress test samples
2022-05-24
LSB隐写术 C#源代码
2021-05-17
de4dot.zip
2020-06-01
H5-Kline-master.zip
2020-03-19
使用SpringBoot整合jersey 实现Restful web service.同时整合springmvc。
2020-02-23
Spring Boot 拦截器+kibana 配置.zip
2019-09-04
SKU 相关代码及知识
2019-01-23
Face++ C# Demo实现web API 人脸比对,识别等接口
2019-01-05
ELK6.2.4搭建
2018-11-15
最新百度地图API Javascript V2.0 离线版本。 完全脱离百度在线地图, 有比较完善的示例Demo, 默认带有全国8级地图
2018-11-13
Fiddler4 以及证书https
2018-11-07
FiddlerCertMaker
2018-11-01
.net2.0 Mysql
2018-10-24
ELK( ElasticSearch、Logstash和Kiabana)
2018-07-20
eureka-server+gateway-service+user-service+zipkin-server
2018-07-18
vue 一套前端框架
2018-05-31
weUI 入门教程:http://blog.csdn.net/libin_1/article/details/50734266
2018-05-17
PostMan工具离线安装
2018-04-17
DsoFramer_KB311765_x86.exe 微软官方office控件,其中含源码,C、C++、Web 三种demo
2018-04-13
使用springboot集成jseesite
2018-03-28
Windows Server 2008 + tomcat 配置使用SSL.docx
2018-02-23
C# idx1-ubyte idx3-ubyte转图片 文字 浏览器
2018-01-04
TensorFlowSharp-master
2018-01-02
tensorflow 摄像头调用 Inception v1分类 vs2017 C#
2018-01-02
Docker 快速安装caffe步骤
2017-12-21
快速安装caffe步骤
2017-12-21
EM抛硬币算法
2017-12-20
ID3 算法 决策树使用的算法与阿里巴巴Java开发手册(终极版)
2017-12-15
Netica贝叶斯
2017-12-14
Mysql安装Linux
2017-12-13
docker离线安装 linux
2017-12-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人