Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务

Paraformer(由达摩院开发)是一款非自回归的端到端语音识别模型,支持高效的语音转文本任务。以下是本地部署Paraformer的详细步骤:


1. 环境准备

  • 操作系统:Linux(推荐Ubuntu 18.04/20.04)或 macOS(需自行解决依赖问题)。
  • Python:3.7 或更高版本。
  • PyTorch:1.8+(需与CUDA版本匹配,若使用GPU)。
  • CUDA/cuDNN(GPU用户):建议CUDA 11.1+,cuDNN 8.0+。
# 示例:创建conda环境
conda create -n paraformer python=3.8
conda activate paraformer
pip install torch torchaudio -f https://download.pytorch.org/whl/torch_stable.html

2. 下载模型与代码

Paraformer的官方实现通常通过 FunASR(达摩院开源工具包)提供:

git clone https://github.com/alibaba-damo-academy/FunASR.git
cd FunASR
pip install -e .  # 安装依赖
  • 下载预训练模型
    • Modelscope 搜索 “Paraformer” 下载模型(如 paraformer-zh 中文模型)。
    • 或使用命令行:
      pip install modelscope
      python -c "from modelscope.hub.snapshot_download import snapshot_download; snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch')"
      
      模型会默认下载到 ~/.cache/modelscope/hub/

3. 本地推理示例

使用FunASR加载模型进行推理:

from funasr import AutoModel

# 加载模型(替换为实际模型路径)
model_path = "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
model = AutoModel(model=model_path)

# 语音识别
wav_path = "your_audio.wav"  # 支持16kHz单声道WAV格式
result = model.generate(input=wav_path)
print(result[0]["text"])

4. 高级部署选项

GPU加速
  • 确保PyTorch已启用CUDA:
    import torch
    print(torch.cuda.is_available())  # 应输出True
    
本地服务化

使用FunASR的HTTP服务:

python -m funasr.bin.asr_launch --model_path ./model --ngpu 1

访问 http://localhost:8008 通过API提交音频。

量化与优化
  • 使用ONNX导出减少延迟:
    from funasr import AutoModel
    model = AutoModel(model="damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch", export_onnx=True)
    

5. 常见问题

  • 音频格式:需16kHz单声道WAV,其他格式需用FFmpeg转换:
    ffmpeg -i input.mp3 -ar 16000 -ac 1 output.wav
    
  • 依赖冲突:建议使用干净的Python环境。
  • 显存不足:尝试更小的模型(如 paraformer-zh-small)。

6. 参考资源

通过以上步骤,您可以在本地高效部署Paraformer模型。如需进一步定制(如微调训练),需准备数据集并参考FunASR的文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨航 AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值