C++排列组合(从N个数中选择M个数的所有情况)

 待选择的数存放在in矩阵中,矩阵的大小为N,从中选出target=M个数,给出所有可能情况。

思路:

in矩阵存放的数为(M=2,N=4):

下标0123
元素123

4

 定义一个数i,从0~2^N,其二进制位数N位,分别表示是否选择第N位,

一个都不选0000选择下标为0的1000
选择下标为3的0001选择下标为0,3的1001
选择下标为2的0010选择下标为0,2的1010
选择下标为2,3的0011选择下标为0,2,3的1011
选择下标为1的0100选择下标为0,1的1100
选择下标为1,3的0101选择下标为0,1,3的1101
选择下标为1,2的0110选择下标为0,1,2的1110
选择下标为1,2,3的0111选择下标为0,1,2,3的1111

可以看出二进制为1的位数之和等于M的是我们需要的组合

所以接下来遍历0~2^N的数,找出其中二进制为1的位数之和等于M的数,并根据1在二进制中的位置转换为in的下标,得到输出矩阵output,其中每个元素都是组合的一种情况。

代码如下:

#include <iostream>
#include<algorithm>
#include<vector>
using namespace std;
vector<vector <int>> zuhe(vector<int> in,int target){//target 是希望选择M个作组合,in是选择的范围,长度为N
	vector<vector <int>> output;
	for(int i=0;i<pow(2,in.size());i++){
		int temp=0, count=0;
		vector<int> weishu;
		for(int j=0;j<in.size();j++){
			if((i&(1<<j))!=0){
				weishu.push_back(j);count++;}//找出二进制为1的位数以及它们的位置
		}
		if(count==target){//位数等于M
		vector<int> one_case;
		for(int j=0;j<count;j++){
			temp = in.size() -1-weishu[j];
			one_case.push_back(in[temp]);
		}
		output.push_back(one_case);
		} 
	}
	return output;
}
int main()
{
	vector<vector <int>> output;
	vector<int> in={1,2,3,4};
	output = zuhe(in, 2);
	for(auto i:output){
		for(auto j:i) cout<<j<<' ';
		cout<<endl;
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值