[学习篇]巧用“组合对比分析法”建立ETF轮动池!股票量化分析工具QTYX-V3.3.0

前言

我们的股票量化系统QTYX在实战中不断迭代升级!!!

分享QTYX系统目的是提供给大家一个搭建量化系统的模版,帮助大家搭建属于自己的系统。因此我们提供源码,可以根据自己的风格二次开发。

关于QTYX的使用攻略可以查看链接:QTYX使用攻略

QTYX一直迭代更新,当前版本V3.3.0

为了帮助大家以QTYX实战版代码为基础,搭建出一套适合自己的量化交易系统,我们推出了《QTYX二次开发葵花宝典系列》。

我们会分几个部分讲解QTYX的设计方案,每次会更新这份手册,然后上传知识星球给大家学习。
本期,我们学习QTYX的组合对比分析功能,然后手把手教大家通过这个方法来建立自己的ETF轮动池!

组合对比分析介绍

关于QTYX的组合分析功能的介绍可以看以下的链接:

量化系统QTYX使用攻略|“选股框架”篇——DeepSeek组合分析!趋势/动量/风险/波动/相关性(更新3.1.6)

目前内置了“走势叠加”(做强势品种)、“收益率/波动率”(性价比品种)、“趋势/动量/成交量”(多因子打分)、相关性矩阵四种组合分析策略。
“走势叠加分析”:把品种放在同一个坐标轴下对比走势。作为散户,我们只能跟随,谁强就买谁。(如果走势叠加在一起看不清,可以点击右侧的图例选择显示和隐藏对应走势)

“收益率/波动率”:考量一个品种是否值得投资的依据是收益/风险两方面。分别使用涨跌幅均值和标准差刻画品种的收益率和波动率,从而对比分析不同品种的收益/风险情况。比如两只股票的涨跌幅的均值相同时,对比标准差,标准差越小说明该股的波动程度越小。

"趋势&动量&成交量三因子打分"本质上通过量化评估品种的趋势强度、动量效应和量价配合三个技术维度,对品种进行综合打分。比如当ETF红绿灯同时出现多个ETF符合买入信号时,我们结合三因子打分,寻找其中趋势明确(方向性明确)、动能充足(持续上涨潜力大)、成交量验证(资金推动真实)的品种进行买入。

“相关性矩阵分析”:衡量多个品种走势之间的相互关联程度。作为散户,我们不仅要挑选强势品种,更要构建一个能有效抵御波动的投资组合。该功能计算并展示一篮子品种涨跌幅之间的相关系数,帮助我们判断它们是否同涨同跌,从而避免“把所有鸡蛋放在一个篮子里”。例如,当准备同时投资科技和消费两个板块时,如果发现其相关系数高达0.9以上,说明它们几乎同步运动,分散风险的效果有限;反之,如果找到相关系数为负或接近0的品种进行搭配(如股票与债券型ETF),则能构建出波动更平滑、持仓体验更佳的组合。

另外,还能通过DeepSeek快速帮我们扩展自己的组合对比分析策略到框架里面。

构建ETF轮动池

ETF红绿灯增加了排名变化监测,为后续做轮动策略提供了基础。

目前红绿灯集合里面的品种接近60多个,于是,我们可以用组合对比分析法来构建自己的小轮动池,添加到ETF交易池中进行自动交易。

第一步,给每个品种分类,理解每个品种的属性风险特征

类别

代表品种(示例)核心特征

A股宽基

上证50ETF、沪深300ETF、创业板指、中证1000ETF

市场贝塔,风格鲜明

A股行业/主题

电力ETF、科创芯片ETF、人工智能ETF、酒ETF

产业周期,高波动

港股/跨境

港股创新药ETF、香港科技50ETF、纳斯达克ETF

连接海外,分散A股风险

特殊资产

黄金ETF、30年国债ETF

与股市低相关或负相关

第二步:应用“组合分析法”相关性矩阵分析,剔除走势高度重复的品种,确保池子内低相关性(解决“冗余”问题)

科技类人工智能ETF云计算ETF大数据ETF软件ETF之间相关性 > 0.85。通过相关性矩阵确认后,只保留1-2个你认为逻辑最硬、流动性最好的(例如:人工智能ETF科创芯片ETF)。

新能源类新能源ETF光伏ETF储能电池ETF锂电池ETF合并为1-2个。

宽基类沪深300ETF上证50ETF相关性高,选其一。中证1000ETF和中证2000ET相关性高,选其一。创业板指和中证1000ETF风格有差异,可考虑都保留。

港股/海外纳斯达克ETF纳指科技ETF选其一。

第三步:在剔除冗余后,使用收益率/波动率分析(定位品种的“风险收益特征”)了解每个备选品种的历史表现,匹配你的风险偏好。

在散点图上,你会看到:
  • 右上角(高收益、高风险):通常是科技、主题ETF(如人工智能ETF)。

  • 左下角(低收益、低风险):通常是宽基、红利类(如红利低波ETF)。

  • 左上角(低收益、高风险)—— 需要警惕:波动大但收益低的品种,考虑剔除。

  • 右下角(高收益、低风险)—— 优选品种:性价比高。

根据你的风格框定范围

  • 激进型:重点关注右上象限的品种。

  • 稳健型:关注中上部,偏向“收益-风险”性价比高的区域。

  • 保守型:关注左下象限及右下象限的品种。

第四步:使用走势叠加分析观察谁的上升趋势更流畅、回撤更小?

假设有两只ETF:

  • ETF A:收益率10%,波动率15%,走势平稳向上

  • ETF B:收益率10%,波动率15%,走势大起大落,近期刚创新高

收益率/波动率分析结果:两者完全一样!都是“右上角”的好品种。
走势叠加分析结果:一眼看出区别!

  • ETF A:趋势稳定,持有体验好

  • ETF B:波动剧烈,虽然创新高但可能面临回调

第五步:趋势/动量/成交量三因子打分(识别当下的“强势品种”)。红绿灯的排名就是根据这个打分实现的,因此我们可以直接在轮动的时候观察排名即可。


我作为激进型投资者,我的目标是最大化收益弹性,愿意承担较大波动来捕捉最强风口。我们的选品逻辑要从“稳健平衡”转向“极致锐度”。
创业板指 (159915)。选择理由:A股成长性代表,科技含量最高,波动率在宽基中最大,符合激进风格。放弃沪深300/上证50等平衡型宽基。科创芯片ETF (588200)。选择理由:硬科技中的“硬核”,国产替代核心,技术壁垒高,行情来时爆发力极强。从一众科技ETF中精选的矛尖。
人工智能ETF (159819)。选择理由:产业大趋势明确,题材想象力空间最大,容易受政策和事件催化,是典型的“高赔率”品种。
机器人ETF (159770)或 通信ETF (515880)。选择理由:二选一。机器人代表高端制造和自动化趋势,通信是AI算力的基础设施。选择近期三因子打分更高、走势更强的通信。
有色金属ETF (159652)。选择理由:经济复苏和全球通胀的“温度计”,波动巨大,与科技股相关性较低,可作为风格对冲。比黄金股ETF更纯粹、弹性更大。证券ETF (159841)。选择理由:“牛市旗手”,行情一旦启动,爆发力在A股首屈一指。虽然周期性明显,但正是激进投资者需要的“高弹性工具”。
[海]纳指科技ETF (159509)。选择理由:比普通纳斯达克ETF更纯粹、更激进,直接聚焦苹果、英伟达、微软等全球科技巨头。波动更大,收益弹性更高。港股创新药ETF (159567)。选择理由:港股特有品种,生物科技属性带来巨大想象空间和股价弹性,与A股医药逻辑不同,风险收益特征更鲜明。香港科技50ETF (159750)或 恒生医疗ETF (513060)。选择理由:二选一。前者覆盖腾讯、美团等互联网巨头,后者是更细分的医疗赛道。根据当下市场热点和三因子打分选择香港科技50ETF。
[期]黄金ETF (518860)。选择理由:当全球风险资产集体崩溃时(如金融危机预期),黄金可能成为唯一上涨的资产。它不是你平时轮动的对象,而是在三因子显示所有9只权益品种得分都为负时的“极端避险选择”。平时可忽略。

"本文仅代表个人观点,用于交流学习,不构成任何投资建议。市场有风险,投资需谨慎,请独立判断并自行承担风险。"


总结

经过组合筛选后,出来的品种就可以保存在交易池中,交易池是和六边形量化框架打通的,可以进行自动交易。

说明

完整的源码上传到知识星球《玩转股票量化交易》中,想要加入知识星球《玩转股票量化交易》的小伙伴记得先微信call我获取福利!

知识星球介绍点击:知识星球《玩转股票量化交易》精华内容概览

### QTYX 部署指南 QTYX 是一款用于股票量化分析工具,其部署过程涉及多个环节,包括环境准备、软件安装以及配置优化。以下是详细的部署方法: #### 1. 环境准备 在开始部署之前,需确保服务器或本地机器满足最低硬件和操作系统需求。通常情况下,推荐使用 Linux 或 macOS 系统作为运行环境[^1]。 - **操作系统**: Ubuntu 20.04 LTS 及以上版本被广泛验证为兼容性强的选择。 - **内存要求**: 至少分配 8GB 的 RAM 来支持复杂的计算任务。 - **存储空间**: 准备至少 50GB 的磁盘空间以容纳数据集及相关依赖项。 #### 2. Python 和虚拟环境设置 QTYX 基于 Python 开发,因此需要先安装合适的 Python 版本并创建独立的工作区。 ```bash sudo apt update && sudo apt install python3-pip python3-dev build-essential libssl-dev libffi-dev python3-setuptools pip3 install --upgrade pip virtualenv virtualenv qtyx_env source qtyx_env/bin/activate ``` 通过上述命令完成基础开发包的安装及虚拟环境激活操作[^2]。 #### 3. 安装 QTYX 工具及其依赖库 进入已建立好的虚拟环境中执行以下脚本来获取最新稳定版程序文件: ```bash git clone https://github.com/QTYX-official/qtxy.git cd qtxy pip install -r requirements.txt python setup.py install ``` 此部分会自拉取项目源码仓库中的必要组件,并依据 `requirements.txt` 文件下载所需第三方模块[^3]。 #### 4. 数据初始化与参数调整 成功安装后还需进一步定制化某些全局变量来适配个人交易策略偏好设定。 编辑位于根目录下的 config.yaml 文件, 修改如下字段: ```yaml database_url: 'postgresql+psycopg2://user:password@localhost/mydb' backtest_start_date: '2022-01-01' strategy_list: - moving_average_crossover - rsi_divergence ``` 其中 database_url 应指向实际使用的数据库连接字符串;而 backtest_start_date 则定义回测起始时间点[^4]。 最后重启服务端口监听进程使更改生效即可正常启应用实例进行模拟测试或者实盘运作模式切换尝试。 ```python from qtyx import app if __name__ == "__main__": app.run(host='0.0.0.0', port=5000) ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值