一、主元素问题
设T[0..n-1]是n个元素的数组。对任一元素x,设S(x)={i|T[i]=x}。当|S(x)|>n/2时,称x为T的主元素。
1) 如果T中元素存在序关系,按分治策略设计并实现一个线性时间算法,确定T[0..n-1]是否有一个主元素。
2) 若T中元素不存在序关系,只能测试任意两个元素是否相等,试设计并实现一个O(nlogn)有效算法,确定T是否有一个主元素。进一步,能找到一个线性时间算法吗?
注:实现的算法要求列出足够的实验结果。
基于分治法的线性时间求主元素算法
■ 算法思想
中位数:数列排序后位于最中间的那个数。如果一个数列有主元素,那么必然是其中位数。求一个数列有没有主元素,只要看中位数是不是主元素。
找中位数的方法:选择一个元素作为划分起点,然后用快速排序的方法将小于它的移动到左边,大于它的移动到右边。这样就将元素划分为两个部分。此时,划分元素所在位置为k。如果k>n/2,那么继续用同样的方法在左边部分找;如果k<n/2就在右边部分找;k=n/2就找到了中位元素。
根据快速排序的思想,可以在平均时间复杂度为O(n)的时间内找出一个数列的中位数。然后再用O(n)的时间检查它是否是主元素。
二,两个链表公共节点
两个单链表,从某个节点开始之后的就相同,所以取两个链表各自的长度m和n,先遍历l=m-n这么多,然后再同步遍历,知道遇到公共节点即可。