主元素问题(蒙特卡洛法和分治法)

本文介绍了使用蒙特卡洛算法及分治法解决主元素问题的方法,详细阐述了算法原理与实现步骤,并提供了C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主元素问题描述

设T为一个有n个元素的数组,当T中某个元素x的个数大于n/2时,称x为T的主元素。

蒙特卡洛算法简介

蒙特卡洛算法(Monte Carlo),是一种不确定性化算法,并无法保证一定能够得到正确的答案。

设p是一个实数,且 1 2 < p < 1 \frac{1}{2}<p<1 21<p<1,如果一个蒙特卡罗算法对于问题的任一实例得到正确解的概率不小于p, 则称该蒙特卡罗算法是p正确的,且称 p − 1 2 p-\frac{1}{2} p21是该算法的优势。

设MC(x)是解某个判定问题D的蒙特卡罗算法,若
(1)当MC(x)返回true时,解总是正确的;
(2)当MC(x)返回false时,解有可能是错的。
称这类蒙特卡罗算法为偏真算法。

y 0 y_{0} y0是所求解问题的一个特殊解答,如判定问题的 true。对于一个解给定问题的蒙特卡罗算法MC(x),如果存在问题实例的子集X使得: (1)当 x ∈ X x\in X xX时,MC(x)返回的解是正确的; (2)当 x ∉ X x\notin X x/X时,正确解是 y 0 y_{0} y0,但MC(x)返回的解未必是 y 0 y_{0} y0。称上述算法 MC(x)是偏 y 0 y_{0} y0的算法。

蒙特卡洛算法解主元素问题

算法随机选择数组元素x,由于数组T的非主元素个数小于n/2,所以,x不为主元素的概率小于1/2。因此判定数组T的主元素存在性的算法是一个偏真1/2正确的算法。50%的错误概率是不可容忍的,利用重复调用技术将错误概率降低到任何可接受的范围内。对于任何给定的 ϵ > 0 \epsilon>0 ϵ>0,重复调用 l o g ( 1 / ϵ ) log(1/\epsilon) log(1/ϵ)次算法majority。它是一个偏真蒙特卡罗算法,且其错误概率小于 ϵ \epsilon ϵ。所需的计算时间显然是 O ( n l o g ( 1 / ϵ ) ) O(nlog(1/\epsilon)) O(nlog(1/ϵ))

代码如下:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

using namespace std;
#define N 10

bool Majority(int *T, int len, int &num)
{
    int n = rand()%10;
    num = T[n];
    int cnt = 0;
    for(int i=0; i<len; i++)
    {
        if(T[i] == num)
            cnt++;
    }
    return (cnt>len/2);
}

bool MajorityMC(int *T, int len, double e, int &num)
{
    int k = ceil(log(1/e)/log((float)2));
    for(int i=0; i<k; i++)
    {
        if(Majority(T, len, num))
            return true;
    }
    return false;
}

int main()
{
    int num=INT_MAX;
    float e = 0.001;
    int T[N]={5,5,5,5,5,5,1,3,4,6};
    cout<<"数组T的元素如下:"<<endl;
	for(int i=0; i<N; i++)
	{
		cout<<T[i]<<" ";
	}
	cout<<endl;
    if(MajorityMC(T,N,e,num))
        cout << "该数组的主元素为:" << num << endl;
    else
        cout << "该数组没有主元素" << endl;
    return 0;
}
分治法解主元素问题

利用分治的思想可以将数组T一分为二,若子数组中元素个数为1,则这个元素就是这个子数组的主元素,否则在子数组中再次调用这个算法,得到两个主元素 n 1 n_{1} n1, n 2 n_{2} n2,若 n 1 = n 2 n_{1}=n_{2} n1=n2,则数组T的主元素为 n 1 n_{1} n1,若 n 1 ≠ n 2 n_{1}\neq n_{2} n1=n2,则分别验证 n 1 n_{1} n1, n 2 n_{2} n2在数组中出现的个数是否大于n/2,满足者即为数组T的主元素,若都不满足则数组T没有主元素。

代码如下:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

using namespace std;
#define N 10

int Partition(int *T, int l, int r)
{
    if(l == r)
    {
        return T[l];
    }

    int m = (l+r)/2;
    int n1 = Partition(T, l, m);
    int n2 = Partition(T, m+1, r);

    if(n1 == n2)
        return n1;
    else
    {
        int cnt1=0,cnt2=0;
        for(int i=l; i<=r; i++)
        {
            if(T[i] == n1)
                cnt1++;
            if(T[i] == n2)
                cnt2++;
        }
        int half = (l+r)/2;
        if(cnt1 > half)
            return n1;
        else if(cnt2 > half)
            return n2;
        else
            return INT_MAX;
    }
}

int main()
{
    int T[N]={5,5,5,5,5,5,1,3,4,6};
    cout<<"数组T的元素如下:"<<endl;
	for(int i=0; i<N; i++)
	{
		cout<<T[i]<<" ";
	}
	cout<<endl;
	if (Partition(T, 0, N-1) != INT_MAX)
		cout << "该数组的主元素为:" << Partition(T, 0, N-1) << endl;
	else
		cout << "该数组没有主元素" << endl;
	return 0;
}

参考链接:https://blog.csdn.net/liufeng_king/article/details/9251589

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值