数据挖掘
文章平均质量分 94
TomHeaven
选择了另一条路,就要承受你预见到的和没有预见的得失。
展开
-
vs2013 编译的 mlpack 库下载
MLPACK是一个C++语言的原创 2014-09-15 22:15:46 · 3982 阅读 · 8 评论 -
线性回归与贝叶斯推理——漫谈机器学习
1. 从观察出发——回归问题在统计学中,我们认为一个变量是服从某种理想分布的,称为理想变量。而为了获得理想变量的值,我们需要去观察这个世界,并得到观察数据,称为观察变量。观察变量与理想变量之间的函数关系被称为观察模型。设观察数据为xi∈Rpx_i \in R^p,理想数据为yi∈Ry_i \in R,观察模型为线性模型 yi=xTiβ+ηi(1)\begin{equation}y_i = x_i原创 2016-12-02 19:13:40 · 4839 阅读 · 0 评论 -
机器学习中的玻尔兹曼分布——最小代价和极大似然
看了一些机器学习的论文,我一直有一个困惑:有的文章训练时写的公式是最小化代价函数,有的文章训练时写的是一个跟自然对数有关的概率分布,这是为什么?经过一番学习,终于有了答案。在这个过程中,还有一个意外收获:那就是著名的逻辑斯第函数的由来。物理上和统计上的玻尔兹曼分布热平衡在物理学领域通常指温度在时间或空间上的稳定。在统计学习中,如果我们将需要学习的模型看成高温物体,将学习的过程看成一个降原创 2017-03-14 23:04:11 · 20246 阅读 · 6 评论